
1

Reconfigurable Analog Computers
Bernd Ulmann, Senior Member, IEEE

FOM University of Applied Sciences

anabrid GmbH

Frankfurt/Main, Germany

Email: ulmann@anabrid.com

AbstractÐThe ACHILLES heel of classic analog computers
was the complex, error prone, and time consuming process
of programming. This typically involved manually patching
hundreds or even thousands of connections between individual
computing elements as well as setting many precision 10-turn
potentiometers manually, often taking hours, or even days. Albeit
being simplified by means of removable patch panels, switching
from one program to another still was time consuming and thus
expensive.

With digital computers about to hit physical boundaries with
respect to energy consumption, clock frequency, and integration
density, analog computers have gained a lot of interest as co-
processors for certain application areas in recent years. This
requires some means for automatic reconfiguration of these
systems under control of an attached digital computer.

The following sections give an overview of classic and modern
approaches towards such autopatch systems.

I. INTRODUCTION AND REQUIREMENTS

Analog computing has been gaining a lot of interest in

recent years due to its promise of substantial speedups and

unmatched energy efficiency for the solution of problems

described by systems of coupled (nonlinear) differential equa-

tions or by partial differential equations. In contrast to to-

day’s prevailing digital computers, which solve problems by

executing a sequence of rather simple instructions read from

some memory attached to a central processing unit (CPU),

an analog computer does not have any memory in the classic

sense at all, it does not execute instructions, and it typically

does not represent values by sequences of bits. Instead, an

analog computer works by setting up an (electronic) model of

the problem under consideration by connecting a number of

computing elements in a suitable fashion. These work on val-

ues represented by continuous voltages or currents and work

in continuous time and full parallelism (see [ULMANN 2023]

for a thorough treatment of analog and hybrid computers, their

history, programming techniques, etc.).

This different approach is best described by a toy problem

such as the computation of a(b + c). On a digital computer

this would require six individual instructions: Three to read

the values a, b, and c, one addition, one multiplication, and

one instruction to store the result back into memory. Since

all of these instructions depend on each other there is not

too much that can be done in order to achieve parallelism

in execution. On an analog computer, this problem would

require two computing elements, one adder and one multiplier

The author would like to thank his colleagues at anabrid GmbH for their
incredible work. He would also like to thank Mrs. NICOLE MATJE for
proofreading.

b

c

+ ∗

a

x

Fig. 1. Computing a(b+ c) on an analog computer

connected as shown in figure 1. All values are represented

by a corresponding voltage (or a current), so each connection

between computing elements is just a single wire, the program

being a directed graph with edges resembling connections and

vertices representing computing elements.

It should be noted here that while a digital computer is

always capable of trading time against problem size, given

that enough memory is available, an analog computer must

physically grow with the problem size, i. e., there must be

enough individual computing elements for any given problem.

Back in the heyday of analog computing, the 1950s±1960s,

this was a problem due to the cost and size of analog com-

puters. Using modern CMOS techniques, it is now possible

to integrate hundreds or thousands of computing elements on

a single integrated circuit, allowing next generation analog

computers to scale to sizes previously unheard of.

This problem of scaling, however, is complemented by a

great benefit: While the time to solution on a digital computer

typically grows with problem size, often much worse than

linearly, typically described by the Big-O notation, the solution

time on an analog computer is basically constant, regardless of

the number of computing elements required for the implemen-

tation of a particular problem. This is a fundamental advantage

of analog computers over stored-program digital computers.

Figure 2 shows an early mechanical differential analyzer

(a mechanical analog computer) with its creator, VANNEVAR

BUSH (11.03.1890±30.06.1974) standing next to it. He is

looking at the central interconnect structure. The computing

elements are arranged to the left and right of this interconnect.

This also becomes visible in the classic program circuit shown

in figure 3. Variables were transmitted between computing

elements by rotating shafts and gears.

Programming such a machine basically required to dis-

mantle and reassemble it from scratch, a process that could

take up to two ªman-daysº (see [BUSH et al. 1945, p. 277]).

This often invalidated the advantage in speed offered by the

system as one could also solve the problem executing a manual

a
rX

iv
:2

5
1
0
.2

5
9
4
2
v
1
  
[c

s.
O

H
] 

 2
9
 O

c
t 

2
0
2
5

https://arxiv.org/abs/2510.25942v1


2

Fig. 2. Mechanical differential analyzer

Fig. 3. Setup of the BUSH differential analyzer for a cosmic ray problem
(see [OWENS 1986, p. 77])

numeric integration technique in about the same time.

II. EARLY ATTEMPTS AT AN AUTOPATCH

Accordingly, the process of programming the machine, i. e.,

connecting the various computing elements, had to be sped

up considerably. This led to the ROCKEFELLER differential

analyzer, which still relied on mechanical computing elements.

However, these were no longer directly connected to each

other by means of rotating shafts and gears but used servo

motors and synchros for input and output. This made it possi-

ble to use a crossbar switch from a telephone exchange system

as the central interconnect of the machine, implementing an

n×m matrix of switches.

From its structure this is the holy grail of analog computing

± having a full n × m switch matrix makes it possible

to connect the computing elements without any restrictions.

Unfortunately, this does obviously not scale. In a machine such

as the ROCKEFELLER analyzer with several dozen computing

elements it was a viable option, but for machines employing

hundreds, thousands, of even more computing elements, a full

matrix interconnect is just not practical.

Fig. 4. Interconnect structure as proposed in [HANNAUER 1968, p. 4-2]

III. HANNAUER’S WORK

In 1961, Electronic Associates Inc. (EAI) performed a

study on an autopatch system based on an EAI 231R analog

computer. This vacuum tube system featured about 2 · 102

individual computing elements. The study concluded that a

viable switch matrix would require between 5 · 104 and

105 individual switches (reed relays back than) ± clearly

impractical.

In the second half of the 1960s, GEORGE HANNAUER, also

at EAI, performed a comprehensive study on the problem of

autopatch systems (see [HANNAUER 1968]) under a NASA

contract. In order to reduce the number of switches required

for a realistically large analog computer, a hierarchy of switch

matrices had to be employed. For this, HANNAUER coined

the terms concentrator and expander for switch matrices

depending on the quotient e = m/n of their inputs and outputs

with e < 1 being a concentrator and e > 1 an expander.

This quite closely resembled the structure of a telephone

exchange where the number of users substantially exceeds

the average number of connections required (see [CLOS 1953]

and [BENES 1965] for details). While blocking conditions in

a telephone exchange are clearly undesirable, they can be

typically resolved by retrying a failed connection attempt. In

an analog computer, however, a blocking condition is fatal as

it implies that a certain program cannot be implemented at all.

Based on this interconnect structure it took EAI about fifteen

years to unveil the SIMSTAR in 1983. This fully reconfigurable

analog computer employed the three stage switch matrix

structure shown in figure 4. It consisted of twenty 16 × 20
input blocks for a total of 320 input signals, twenty 20 × 32
middle blocks, and 32 22 × 16 output blocks yielding 512
output signals. This setup required 30464 FET switches instead

of 163840 which would be required in the naÈıve approach

using a single matrix consisting of 320 × 512 individual

switches. SIMSTAR was an incredible technological success

but unfortunately a commercial failure as it came at a time

when digital computers became faster and cheaper at an ever

increasing rate.



3

Fig. 5. Interconnect system of a LUCIDAC

IV. VOLTAGE AND CURRENT COUPLING

The representation of variables by voltages or currents

has a substantial effect on the setup of an analog computer

program. Using voltages, as in the vast majority of classic and

modern analog computers, one output signal of a computing

element can be distributed to the inputs of a number of other

computing elements. However, this requires multiple inputs

per computing elements ± integrators or summers typically

have somewhere between four and six inputs, with built-

in weights of 1 and 10. Accordingly, there are much more

computing element inputs than outputs in a voltage coupled

system.

Using currents instead of voltages allows to implicitly sum

a number of input currents at the input of a computing element

such as an integrator or summer, reducing the number of

inputs in the system substantially as every computing element

only has one input (except multipliers or comparators which

still require two or more different inputs). Unfortunately, an

output current cannot be distributed to a number of inputs of

following computing elements directly, thus requiring multiple

buffered current outputs per computing element.

These particular advantages and disadvantages of voltage

and current coupling can be combined favorably as demon-

strated in modern systems such as the small-scale LUCIDAC,1

featuring eight integrators, four multipliers, and 32 coefficients

or the much larger REDAC,2 with up to 1000 integrators, 500
multipliers, and 8000 coefficients. Figure 5 shows the basic

interconnect structure of the small LUCIDAC system.

On the top right is a voltage coupled 16×32 switch matrix

capable of connecting each input row line to any combina-

tion of its 32 column lines. These column lines each feed

a multiplying digital-analog-converter (DAC) implementing

coefficient elements. Each of these coefficients multiplies its

1See https://anabrid.com/lucidac, retrieved 26.09.2025.
2See https://anabrid.com/redac, retrieved 26.09.2025.

fn X(t);

fn Y(t);

fn Z(t);

let diff[X, t] = 1.8 * Y - X;

let diff[Y, t] = 1.56 * X * (1 - 2.678 * Z) - 0.1 * Y;

let diff[Z, t] = 1.5 * X * Y - 0.2667 * Z;

let X(t: 0) = 0.1;

let Y(t: 0) = 0.0;

let Z(t: 0) = 0.0;

plot(x: X(t), y: Y(t));

out X(t);

out Y(t);

Fig. 6. DLS description of a chaotic LORENZ ’63 system

Fig. 7. Resulting analog computer setup for the chaotic LORENZ ’63 system

input voltage by a 12 bit value representing a value interval

of [−10, 10]. At its output it delivers a current which is then

fed into one of the 32 column lines of the 32 × 16 switch

matrix shown on the bottom right. This matrix is now current

coupled. Accordingly, it can perform an implicit summation of

input currents onto a single output row line. Each of these 16
row lines is connected to one input of the computing elements.

Using this mixed voltage/current value representation, the

analog computer does not need any explicit summers as

computing elements, thus greatly reducing the number of

connections within a given setup. The degree of sparsity in

a setup like this is determined by the number of column lines

of the two matrices, which can be easily extended beyond the

32 lanes shown here.

Programming these systems is done using a domain specific

language (DSL) and a compiler capable of translating problem

descriptions into suitable configuration bitstreams. Figure 6

shows the input to compiler specifying a chaotic Lorenz ’63

system (see [LORENZ 1963]). The resulting analog computer

setup is shown in figure 7. Integrators are represented by

triangular structures with a small rectangular box on the

left, the elements inscribed with +Π are multipliers, and

coefficients are represented by circles.

Since there is one coefficient per column line in this partic-

ular autopatch system, every input to a computing element

has an associated coefficient element. Since the inputs to

the computing elements are current coupled, multiple input

values can be combined at the current input of an element.

Noteworthy is the absence of any summers from this circuit

as summation takes place in the current coupled matrix.

V. COEFFICIENTS

Another interesting aspect of modern reconfigurable analog

computers is the implementation of its coefficient elements,

namely their resolution and available value interval. While

coefficients in classic analog computers, being just voltage



4

dividers, were restricted to values within [0, 1], using multi-

plying DACs with output buffers, it is now easy to extend

the interval into the negative domain such as [−1, 1]. This

greatly simplifies programming and system implementation as

no inverters are needed for sign inversions, further reducing

the number of computing elements required for a particular

problem.

Using current coupling, at least in the output stage of a co-

efficient, makes it possible to extend the value interval further

with [−10, 10] being desirable. This further aids programming

and simplifies the overall analog computer implementation as

no built-in weights for integrators, etc., are required to upscale

values.

In a system such as the LUCIDAC, every column lane

connecting the two switch matrices has an associated co-

efficient. Accordingly, the number of coefficient elements

grows with the degree of connectivity, causing substantial cost

of implementation due to the complexity of high resolution

coefficients.

However, a study of real analog computer programs shows

that not all coefficients need 12 or more bits of resolution.

In fact, a substantial number of coefficients will have values

such as ±10, ±1, ±0.5, and ±0.1, requiring only three bits

of configuration data per coefficient. The actual proportion of

high resolution coefficients to these low resolution elements

highly depends on the class of problems the analog computer

is used for, but having about 20% to 30% of low resolution

coefficients seems to be sufficient to implement most if not

all problems.

VI. CONFIGURATION TIME

With solution times in the order of several µs, these modern

analog computers pose the same problem as VANNEVAR

BUSH’s differential analyzers nearly 100 years ago: The con-

figuration time must be on par with the solution time. Ideally, it

should be even smaller in order to not lose the speed advantage

of the actual solution process due to a slow setup.

Since the number of configuration bits required for a system

scales linearly with the number of switches to be controlled

and the number of coefficients times their respective solution,

it will be necessary to implement some way of performing

ªsparse configurationsº, i. e., update switch matrices and coef-

ficient values on a ªneed to changeº basis instead of uploading

a full set of configuration data every time a setup is changed.

VII. CONCLUSION

Analog computers will play a major role in future computer

systems as specialized co-processors, alleviating the digital

processor from a wide range of compute intensive tasks.

Elaborate autopatch systems as described above are of central

importance for this particular applications.

In addition to this, suitable software support in order to

abstract from the underlying analog computing paradigm as

much as possible and to integrate this class of co-processors

seamlessly into existing software systems is required, too. This

will include libraries for popular programming languages such

as Python as well as plug-ins for systems like MATLAB, etc.

These developments will bring analog computers back

to a wide variety of applications, most noteworthy high-

performance-computing (HPC) where their extremely high

energy efficiency and fast solution times will make it possible

to tackle problems currently not within reach of classic digital

computers.

REFERENCES

[BENES 1965] V. E. BENES, Mathematical Theory of Connecting Networks

and Telephone Traffic, Academic Press, New York, 1965
[BUSH et al. 1945] VANNEVAR BUSH, S. H. CALDWELL, ªA New Type of

Differential Analyzerº, in Journal of The Franklin Institute ± Devoted to

Science and the Mechanic Arts, Vol. 240, No. 4, October 1945, pp. 255±
326

[CLOS 1953] CHARLES CLOS, ªA Study of Non-Blocking Switching Net-
worksº, in Bell System Technical Journal, March 1953, Vol. 32, pp. 406±
423

[HANNAUER 1968] GEORGE HANNAUER, Stored Program Concept for Ana-

log Computers, final report, EAI project 320009, NASA order NAS8-
21228

[LORENZ 1963] EDWARD NORTON LORENZ, ªDeterministic Nonperiodic
Flowº, in Journal of the Atmospheric Sciences, Vol. 20, March 1963,
pp. 130±141

[OWENS 1986] LARRY OWENS, ªVannevar Bush and the Differential Ana-
lyzer: The Text and Context of an Early Computerº, in Technology and

Culture, Vol. 27, No. 1, Jan. 1986, pp. 63±95
[ULMANN 2023] BERND ULMANN, Analog Computing, 2nd edition, De-

Gruyter, 2023

Bernd Ulmann was born in Neu-Ulm, Germany
in 1970. He received his diploma in mathematics
from the Johannes Gutenberg-UniversitÈat, Mainz,
Germany, in 1996. He received his Ph.D. from the
UniversitÈat Hamburg, Germany, in 2009.

He is professor for business informatics at
the FOM University of Applied Sciences, Frank-
furt/Main, Germany. His main interests are analog
and hybrid computing, the simulation of dynamic
systems and analog implementations of chaotic sys-
tems. He is author of several books on these topics.


