2510.25942v1 [cs.OH] 29 Oct 2025

.
.

arxiv

Reconfigurable Analog Computers

Bernd Ulmann, Senior Member, IEEE
FOM University of Applied Sciences
anabrid GmbH
Frankfurt/Main, Germany
Email: ulmann@anabrid.com

Abstract—The ACHILLES heel of classic analog computers
was the complex, error prone, and time consuming process
of programming. This typically involved manually patching
hundreds or even thousands of connections between individual
computing elements as well as setting many precision 10-turn
potentiometers manually, often taking hours, or even days. Albeit
being simplified by means of removable patch panels, switching
from one program to another still was time consuming and thus
expensive.

With digital computers about to hit physical boundaries with
respect to energy consumption, clock frequency, and integration
density, analog computers have gained a lot of interest as co-
processors for certain application areas in recent years. This
requires some means for automatic reconfiguration of these
systems under control of an attached digital computer.

The following sections give an overview of classic and modern
approaches towards such autopatch systems.

I. INTRODUCTION AND REQUIREMENTS

Analog computing has been gaining a lot of interest in
recent years due to its promise of substantial speedups and
unmatched energy efficiency for the solution of problems
described by systems of coupled (nonlinear) differential equa-
tions or by partial differential equations. In contrast to to-
day’s prevailing digital computers, which solve problems by
executing a sequence of rather simple instructions read from
some memory attached to a central processing unit (CPU),
an analog computer does not have any memory in the classic
sense at all, it does not execute instructions, and it typically
does not represent values by sequences of bits. Instead, an
analog computer works by setting up an (electronic) model of
the problem under consideration by connecting a number of
computing elements in a suitable fashion. These work on val-
ues represented by continuous voltages or currents and work
in continuous time and full parallelism (see [ULMANN 2023]
for a thorough treatment of analog and hybrid computers, their
history, programming techniques, etc.).

This different approach is best described by a toy problem
such as the computation of a(b + ¢). On a digital computer
this would require six individual instructions: Three to read
the values a, b, and ¢, one addition, one multiplication, and
one instruction to store the result back into memory. Since
all of these instructions depend on each other there is not
too much that can be done in order to achieve parallelism
in execution. On an analog computer, this problem would
require two computing elements, one adder and one multiplier

The author would like to thank his colleagues at anabrid GmbH for their
incredible work. He would also like to thank Mrs. NICOLE MATIE for
proofreading.

c

O

=G

Fig. 1. Computing a(b + ¢) on an analog computer

b

connected as shown in figure 1. All values are represented
by a corresponding voltage (or a current), so each connection
between computing elements is just a single wire, the program
being a directed graph with edges resembling connections and
vertices representing computing elements.

It should be noted here that while a digital computer is
always capable of trading time against problem size, given
that enough memory is available, an analog computer must
physically grow with the problem size, i.e., there must be
enough individual computing elements for any given problem.
Back in the heyday of analog computing, the 1950s—1960s,
this was a problem due to the cost and size of analog com-
puters. Using modern CMOS techniques, it is now possible
to integrate hundreds or thousands of computing elements on
a single integrated circuit, allowing next generation analog
computers to scale to sizes previously unheard of.

This problem of scaling, however, is complemented by a
great benefit: While the time to solution on a digital computer
typically grows with problem size, often much worse than
linearly, typically described by the Big-O notation, the solution
time on an analog computer is basically constant, regardless of
the number of computing elements required for the implemen-
tation of a particular problem. This is a fundamental advantage
of analog computers over stored-program digital computers.

Figure 2 shows an early mechanical differential analyzer
(a mechanical analog computer) with its creator, VANNEVAR
BUSH (11.03.1890-30.06.1974) standing next to it. He is
looking at the central interconnect structure. The computing
elements are arranged to the left and right of this interconnect.
This also becomes visible in the classic program circuit shown
in figure 3. Variables were transmitted between computing
elements by rotating shafts and gears.

Programming such a machine basically required to dis-
mantle and reassemble it from scratch, a process that could
take up to two “man-days” (see [BUSH et al. 1945, p. 277]).
This often invalidated the advantage in speed offered by the
system as one could also solve the problem executing a manual

https://arxiv.org/abs/2510.25942v1

Fig. 2. Mechanical differential analyzer

PRRR lHﬂ[Z\ZI

o
T
1t

|
qth)
H

=

L=ll=

=7

it

b
[==:]

k=
Gz

e | [

T

R i

e

&1

Fig. 3. Setup of the BUSH differential analyzer for a cosmic ray problem
(see [OWENS 1986, p. 77])

numeric integration technique in about the same time.

II. EARLY ATTEMPTS AT AN AUTOPATCH

Accordingly, the process of programming the machine, i.e.,
connecting the various computing elements, had to be sped
up considerably. This led to the ROCKEFELLER differential
analyzer, which still relied on mechanical computing elements.
However, these were no longer directly connected to each
other by means of rotating shafts and gears but used servo
motors and synchros for input and output. This made it possi-
ble to use a crossbar switch from a telephone exchange system
as the central interconnect of the machine, implementing an
n X m matrix of switches.

From its structure this is the holy grail of analog computing
— having a full n x m switch matrix makes it possible
to connect the computing elements without any restrictions.
Unfortunately, this does obviously not scale. In a machine such
as the ROCKEFELLER analyzer with several dozen computing
elements it was a viable option, but for machines employing
hundreds, thousands, of even more computing elements, a full
matrix interconnect is just not practical.

(n
m=3
N=6 M=12
INPUTS S | 3 > OUTPUTS
m=3

m=2 MLIDDLE
\ BLOCKS
NPUT 3b
‘BLOLK! (Yl’) /M.:B/
(2419 ovTPUT
BLocks
(2 513)

Fig. 4. Interconnect structure as proposed in [HANNAUER 1968, p. 4-2]

III. HANNAUER’S WORK

In 1961, Electronic Associates Inc. (EAI) performed a
study on an autopatch system based on an EAI 231R analog
computer. This vacuum tube system featured about 2 - 102
individual computing elements. The study concluded that a
viable switch matrix would require between 5 - 10* and
10° individual switches (reed relays back than) — clearly
impractical.

In the second half of the 1960s, GEORGE HANNAUER, also
at EAI, performed a comprehensive study on the problem of
autopatch systems (see [HANNAUER 1968]) under a NASA
contract. In order to reduce the number of switches required
for a realistically large analog computer, a hierarchy of switch
matrices had to be employed. For this, HANNAUER coined
the terms concentrator and expander for switch matrices
depending on the quotient e = m/n of their inputs and outputs
with e < 1 being a concentrator and e > 1 an expander.

This quite closely resembled the structure of a telephone
exchange where the number of users substantially exceeds
the average number of connections required (see [CLOS 1953]
and [BENES 1965] for details). While blocking conditions in
a telephone exchange are clearly undesirable, they can be
typically resolved by retrying a failed connection attempt. In
an analog computer, however, a blocking condition is fatal as
it implies that a certain program cannot be implemented at all.

Based on this interconnect structure it took EAI about fifteen
years to unveil the SIMSTAR in 1983. This fully reconfigurable
analog computer employed the three stage switch matrix
structure shown in figure 4. It consisted of twenty 16 x 20
input blocks for a total of 320 input signals, twenty 20 x 32
middle blocks, and 32 22 x 16 output blocks yielding 512
output signals. This setup required 30464 FET switches instead
of 163840 which would be required in the naive approach
using a single matrix consisting of 320 x 512 individual
switches. SIMSTAR was an incredible technological success
but unfortunately a commercial failure as it came at a time
when digital computers became faster and cheaper at an ever
increasing rate.

32 output lines (voltages)

Voltage coupled (expander)

= A :
o5
16 input lines (voltages)

constg_..3

coefficients:
voltage in, co c1 ez o . e a1
current out

16 output lines (currents)

Voltage coupled (concentrator)

32 input lines (currents)

Fig. 5. Interconnect system of a LUCIDAC

IV. VOLTAGE AND CURRENT COUPLING

The representation of variables by voltages or currents
has a substantial effect on the setup of an analog computer
program. Using voltages, as in the vast majority of classic and
modern analog computers, one output signal of a computing
element can be distributed to the inputs of a number of other
computing elements. However, this requires multiple inputs
per computing elements — integrators or summers typically
have somewhere between four and six inputs, with built-
in weights of 1 and 10. Accordingly, there are much more
computing element inputs than outputs in a voltage coupled
system.

Using currents instead of voltages allows to implicitly sum
a number of input currents at the input of a computing element
such as an integrator or summer, reducing the number of
inputs in the system substantially as every computing element
only has one input (except multipliers or comparators which
still require two or more different inputs). Unfortunately, an
output current cannot be distributed to a number of inputs of
following computing elements directly, thus requiring multiple
buffered current outputs per computing element.

These particular advantages and disadvantages of voltage
and current coupling can be combined favorably as demon-
strated in modern systems such as the small-scale LUCIDAC,!
featuring eight integrators, four multipliers, and 32 coefficients
or the much larger REDAC,?> with up to 1000 integrators, 500
multipliers, and 8000 coefficients. Figure 5 shows the basic
interconnect structure of the small LUCIDAC system.

On the top right is a voltage coupled 16 x 32 switch matrix
capable of connecting each input row line to any combina-
tion of its 32 column lines. These column lines each feed
a multiplying digital-analog-converter (DAC) implementing
coefficient elements. Each of these coefficients multiplies its

ISee https://anabrid.com/lucidac, retrieved 26.09.2025.
2See https://anabrid.com/redac, retrieved 26.09.2025.

fn X(t)

fn Y(t);

fn Z(t);

let diff[X, t] = 1.8 » Y - X;

let diff[Y, t] = 1.56 » X = (1 - 2.678 * Z) - 0.1 % Y;
let diff[Z, t] = 1.5 « X = Y - 0.2667 * Z;
let X(t: 0) = 0.1;

let Y(t: 0) = 0.0;

let z(t: 0) = 0.0;

plot (x: X(t), y: Y(t));

out X(t);

out Y (t);

Fig. 6. DLS description of a chaotic LORENZ ’63 system

Fig. 7. Resulting analog computer setup for the chaotic LORENZ ’63 system

input voltage by a 12 bit value representing a value interval
of [—10,10]. At its output it delivers a current which is then
fed into one of the 32 column lines of the 32 x 16 switch
matrix shown on the bottom right. This matrix is now current
coupled. Accordingly, it can perform an implicit summation of
input currents onto a single output row line. Each of these 16
row lines is connected to one input of the computing elements.

Using this mixed voltage/current value representation, the
analog computer does not need any explicit summers as
computing elements, thus greatly reducing the number of
connections within a given setup. The degree of sparsity in
a setup like this is determined by the number of column lines
of the two matrices, which can be easily extended beyond the
32 lanes shown here.

Programming these systems is done using a domain specific
language (DSL) and a compiler capable of translating problem
descriptions into suitable configuration bitstreams. Figure 6
shows the input to compiler specifying a chaotic Lorenz 63
system (see [LORENZ 1963]). The resulting analog computer
setup is shown in figure 7. Integrators are represented by
triangular structures with a small rectangular box on the
left, the elements inscribed with +II are multipliers, and
coefficients are represented by circles.

Since there is one coefficient per column line in this partic-
ular autopatch system, every input to a computing element
has an associated coefficient element. Since the inputs to
the computing elements are current coupled, multiple input
values can be combined at the current input of an element.
Noteworthy is the absence of any summers from this circuit
as summation takes place in the current coupled matrix.

V. COEFFICIENTS

Another interesting aspect of modern reconfigurable analog
computers is the implementation of its coefficient elements,
namely their resolution and available value interval. While
coefficients in classic analog computers, being just voltage

dividers, were restricted to values within [0, 1], using multi-
plying DACs with output buffers, it is now easy to extend
the interval into the negative domain such as [—1,1]. This
greatly simplifies programming and system implementation as
no inverters are needed for sign inversions, further reducing
the number of computing elements required for a particular
problem.

Using current coupling, at least in the output stage of a co-
efficient, makes it possible to extend the value interval further
with [—10, 10] being desirable. This further aids programming
and simplifies the overall analog computer implementation as
no built-in weights for integrators, etc., are required to upscale
values.

In a system such as the LUCIDAC, every column lane
connecting the two switch matrices has an associated co-
efficient. Accordingly, the number of coefficient elements
grows with the degree of connectivity, causing substantial cost
of implementation due to the complexity of high resolution
coefficients.

However, a study of real analog computer programs shows
that not all coefficients need 12 or more bits of resolution.
In fact, a substantial number of coefficients will have values
such as £10, £1, 0.5, and 0.1, requiring only three bits
of configuration data per coefficient. The actual proportion of
high resolution coefficients to these low resolution elements
highly depends on the class of problems the analog computer
is used for, but having about 20% to 30% of low resolution
coefficients seems to be sufficient to implement most if not
all problems.

VI. CONFIGURATION TIME

With solution times in the order of several pus, these modern
analog computers pose the same problem as VANNEVAR
BUsH’s differential analyzers nearly 100 years ago: The con-
figuration time must be on par with the solution time. Ideally, it
should be even smaller in order to not lose the speed advantage
of the actual solution process due to a slow setup.

Since the number of configuration bits required for a system
scales linearly with the number of switches to be controlled
and the number of coefficients times their respective solution,
it will be necessary to implement some way of performing
“sparse configurations”, i. e., update switch matrices and coef-
ficient values on a “need to change” basis instead of uploading
a full set of configuration data every time a setup is changed.

VII. CONCLUSION

Analog computers will play a major role in future computer
systems as specialized co-processors, alleviating the digital
processor from a wide range of compute intensive tasks.
Elaborate autopatch systems as described above are of central
importance for this particular applications.

In addition to this, suitable software support in order to
abstract from the underlying analog computing paradigm as
much as possible and to integrate this class of co-processors
seamlessly into existing software systems is required, too. This
will include libraries for popular programming languages such
as Python as well as plug-ins for systems like MATLAB, etc.

These developments will bring analog computers back
to a wide variety of applications, most noteworthy high-
performance-computing (HPC) where their extremely high
energy efficiency and fast solution times will make it possible
to tackle problems currently not within reach of classic digital
computers.

REFERENCES

[BENES 1965] V. E. BENES, Mathematical Theory of Connecting Networks
and Telephone Traffic, Academic Press, New York, 1965

[BUSH et al. 1945] VANNEVAR BUSH, S. H. CALDWELL, “A New Type of
Differential Analyzer”, in Journal of The Franklin Institute — Devoted to
Science and the Mechanic Arts, Vol. 240, No. 4, October 1945, pp. 255—
326

[CLOS 1953] CHARLES CLOS, “A Study of Non-Blocking Switching Net-
works”, in Bell System Technical Journal, March 1953, Vol. 32, pp. 406—
423

[HANNAUER 1968] GEORGE HANNAUER, Stored Program Concept for Ana-
log Computers, final report, EAI project 320009, NASA order NASS8-
21228

[LORENZ 1963] EDWARD NORTON LORENZ, “Deterministic Nonperiodic
Flow”, in Journal of the Atmospheric Sciences, Vol. 20, March 1963,
pp. 130-141

[OWENS 1986] LARRY OWENS, “Vannevar Bush and the Differential Ana-
lyzer: The Text and Context of an Early Computer”, in Technology and
Culture, Vol. 27, No. 1, Jan. 1986, pp. 63-95

[ULMANN 2023] BERND ULMANN, Analog Computing, 2nd edition, De-
Gruyter, 2023

Bernd Ulmann was born in Neu-Ulm, Germany
in 1970. He received his diploma in mathematics
from the Johannes Gutenberg-Universitit, Mainz,
Germany, in 1996. He received his Ph.D. from the
Universitdit Hamburg, Germany, in 2009.

He is professor for business informatics at
the FOM University of Applied Sciences, Frank-
furt/Main, Germany. His main interests are analog
and hybrid computing, the simulation of dynamic
systems and analog implementations of chaotic sys-
tems. He is author of several books on these topics.

/] \

