arXiv:1911.12942v3 [cs.CR] 6 Jan 2021

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 1

When Blockchain Meets Al: Optimal Mining
Strategy Achieved By Machine Learning

Taotao Wang, Soung Chang Liew, and Shengli Zhang

Abstract—This work applies reinforcement learning (RL) from
the AI machine learning field to derive an optimal Bitcoin-like
blockchain mining strategy. A salient feature of the RL learning
framework is that an optimal (or near optimal) strategy can
be obtained without the knowing the details of the blockchain
network model. Previously, the most profitable mining strat-
egy was believed to be honest mining encoded in the default
blockchain protocol. It was shown later that it is possible to
gain more mining rewards by deviating from honest mining. In
particular, the mining problem can be formulated as a Markov
Decision Process (MDP) which can be solved to give the optimal
mining strategy. However, solving the mining MDP requires
knowing the values of various parameters that characterize the
blockchain network model. In real blockchain networks, these
parameter values are not easy to obtain and may change over
time. This hinders the use of the MDP model-based solution.
In this work, we employ RL to dynamically learn a mining
strategy with performance approaching that of the optimal
mining strategy. Since the mining MDP problem has a non-linear
objective function (rather than linear functions of standard MDP
problems), we design a new multi-dimensional RL algorithm to
solve the problem. Experimental results indicate that, without
knowing the parameter values of the mining MDP model, our
multi-dimensional RL mining algorithm can still achieve optimal
performance over time-varying blockchain networks.

Index Terms—Blockchain, Proof-of-work, Selfish Mining,

MDP, Reinforcement Learning.

I. INTRODUCTION

HE early digital cryptocurrencies rely on central authori-

ties to settle transactions. Digital cryptocurrencies did not
flourish, until the advent of Bitcoin [1f], [2]. To avoid single
points of failure, Bitcoin is designed as a decentralized system
without a central authority that could be compromised by
corruption and attacks [[1]]. Since the birth of Bitcoin in 2008,
it has become a widely accepted currency all over the world.
In early 2018, the market price of Bitcoin went as high as
20,000 US dollars, reflecting robust demands and enthusiasm
for Bitcoin by the public.

The security of Bitcoin is built on the foundation technol-
ogy of blockchain. Blockchain contains several key technical
components, including its chained data structure, peer-to-peer
network protocol, and distributed consensus algorithm [3[]—[5].

T. Wang and S. Zhang are the College of Electronics and Informa-
tion Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
ttwang @szu.edu.cn; zsl@szu.edu.cn).

S. Liew is with the Department of Information Engineering, The
Chinese University of Hong Kong, Hong Kong SAR, China (e-mail:
soung @ie.cuhk.edu.hk)

This research was funded by the National Key R&D Program of China
(2018YFB2100705) and the Natural Science Fund of Guangdong Province
(2020A1515010708).

Blockchain has become a cutting-edge technology in FinTech
[6], Internet of Things (IoT) [7], [8], and supply chains [9].
The Bitcoin’s blockchain is not controlled by a central author-
ity; it is assembled by peers in the network independently in
a distributed manner. In order that the blockchains maintained
by different peers are consistent, the peers must agree on a
single universal truth about the transactions of Bitcoin through
a consensus-building process.

Consensus in the Bitcoin network is achieved by the
proof-of-work (PoW) consensus algorithm. The idea of PoW
originated in [10] and is rediscovered and exploited in the
implementation of Bitcoin. POW provides strong probabilistic
consensus guarantee with resilience against up to 1/2 malicious
nodes [11]], [12]. The successful operation of Bitcoin demon-
strates the practicality of using PoW to achieve consensus.
Subsequent to Bitcoin, many other cryptocurrencies, such as
Litecoin [13]], Ethereum [14], also adopt the PoW consensus
algorithm.

Peers running the PoW consensus algorithm are miners who
compete to solve a difficult cryptographic hash puzzle, called
the PoW problem. The miner who successfully solves the PoW
problem obtains the right to extend the blockchain with a block
consisting of valid transactions. In doing so, the miner receives
a reward in the form of a newly minted coin written into the
added block. Solving the PoW problem for rewards is called
mining, just like mining for precious metals.

Miners commit computation resources to solve the PoW
problem. Previously, it was believed that the most profitable
mining strategy is honest mining, wherein a miner will broad-
cast the newly added block as soon as it has solved the PoW
problem. Let « be the ratio of a particular miner’s computing
power over the computing powers of all miners. This ratio is
also the probability that the miner can solve the PoW problem
before others in each round of an added block [3]]. Over the
long term, the rewards to a miner that executes the honest
mining strategy are therefore « fraction of the total rewards
issued by the Bitcoin network. This is reasonable since miners
share the pie in proportion to their investments. Not known
were whether there are other mining strategies more profitable
than honest mining.

Later, the authors of [[15]] developed a selfish mining strategy
that can earn higher rewards than honest mining. A selfish
miner does not broadcast its mined block immediately; it
carries out a block-withholding attack by secretly linking its
future mined blocks to the withheld mined block. If the selfish
miner can mine two successive blocks before other miners do,
it can broadcast its two blocks at the same time to override
the block mined by others. Since Bitcoin has an inherent

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2

self-adjusting mechanism to ensure that on average only one
block is added to the blockchain every 10 minutes [16], by
invalidating the blocks of others (hence, removing them from
the blockchain), the selfish miner can increase its own profits.
For example, with computing power ratio « = 1/4, the
rewards obtained by selfish mining can be up to 1/3 fraction
of the total rewards [15]]. Based on this observation, [17]]
further proposed various selfish mining strategies with even
higher rewards. Despite the many versions of selfish mining,
the optimal (i.e., most-profitable) mining strategy remained
elusive until [[18]].

The authors of [18|] formulated the mining problem as a
general Markov Decision Process (MDP) with a large state-
action space. The objective of the mining MDP, however, is not
a linear function of the rewards as in standard MDPs. Thus, the
mining MDP cannot be solved using a standard MDP solver.
To solve the problem, [18§]] first transformed the mining MDP
with the non-linear objective to a family of MDPs with linear
objectives, and then employed a standard MDP solver over the
family of MDPs to iteratively search for the optimal mining
strategy.

The approach in [18]] is model-based in that various param-
eter values (e.g., &) must be known before the MDP can be
set up. In real blockchain networks, the exact parameter values
are not easy to obtain and may change over time, hindering the
practical adoption of the solution. In this paper, we propose
a model-free approach that solves the mining MDP using
machine learning tools. In particular, we solve the mining
MDP using reinforcement learning (RL) without the need to
know the parameter values in the mining MDP model.

RL is a machine-learning paradigm, where agents learn
successful strategies that yield the largest long-term reward
from trial-and-error interactions with their environment [19]],
[20]. Q-learning is the most popular RL technique [21]. It
can learn a good policy by updating a state-action value
function without an operating model of the environment. RL
has been successfully applied in many challenging tasks, e,g.,
playing video games [22] and Go [23]], and controlling robotic
movements [24]).

The original RL algorithm cannot deal with the nonlinear
objective function of our mining problem. In this paper, we
put forth a new multi-dimensional RL algorithm to tackle
the problem. Experimental results indicate that our multi-
dimensional RL mining algorithm can successfully find the
optimal strategy. Importantly, it demonstrates robustness and
adaptability to a changing environment (i.e., parameter values
changing dynamically over time).

II. BLOCKCHAIN PRELIMINARIES

Blockchain is a decentralized append-only ledger for digital
assets. The data of blockchain is replicated and shared among
all participants. Its past recorded data are tamper-resistant and
participants can only append new data to the tail-end of the
chain of blocks. The state of blockchain is changed according
to transactions, and transactions are group into blocks that
are appended to the blockchain. The header of the block
encapsulates the hash of the preceding block, the hash of this

block, the Merkle roolp_-] of all transactions contained in this
block, and a number called nonce that is generated by PoW.
Since each block must refer to its preceding block by placing
the hash of its preceding block in its header, all the blocks
form a chain of blocks arranged in chronological order. Fig.
1 illustrates the data structure of blockchain.

A. Proof of Work and Mining

In this paper, we focus on a Bitcoin-like blockchain that
adopts the PoW consensus protocol to validate new blocks
in a decentralized mannerE] In each round, the PoW protocol
selects a leader that is responsible for packing transactions
into a block and appends this block to the blockchain. To
prevent adversaries from monopolizing the blockchain, the
leader selection must be approximately random. Since Bitcoin-
like blockchain is permissionless and anonymity is inherently
designed as the goal, it must consider the Sybil attack where
an adversary simply creates many participants with different
identities to increase its probability of being selected as the
leader. To address the above issues, the key idea behind PoW
is that a participant will be randomly selected as the leader of
each round with a probability in proportion to its computing
power.

In particular, blockchain implements PoW using computa-
tional hash puzzles. To create a new block, the nonce placed
into the header of the block must be a solution to the hash
puzzle expressed by the following inequality

H(n,p,m) <D (D

where the nonce n, the hash of the previous block p, the
Merkle root of all included transactions m are taken as the
input of a cryptographic hash function #(-) and the output
of the hash function should fall below a target D that is
small with respect to the whole range of the hash function
outputs. The used hash function (e.g., SHA-256 hash is used
for Bitcoin) satisfies the property of puzzle friendliness [26]: it
is challenging to guess the nonce to fulfill (1) by a one-shot try.
The only way to solve (1) is to try a large number of nonces
one by one to check if (1) is fulfilled until one lucky nonce
is found. Therefore, the probability of finding such a nonce
is proportional to the computing power of the participant—
the faster the hash function in (1) can be computed in each
trial, the more nounces can be tried per unit time. Using the
blockchain terminology, the process of computing hashes to
find a nonce is called mining, and the participants involved
are called miners.

B. Honest Mining Strategy

When a miner tries to append a new block to the latest legal
block by placing the hash of the latest block in the header
of the new block, we say that the miner mines on the latest
block. The blockchain is maintained by miners in the following
manner.

IThe Merkle root of the transactions is the hash value of the Merkle tree
whose leaves are the transactions [25]].

2There are also blockchains adopting other several consensus algorithms,
such as Proof of Stake (PoS), and Byzantine fault tolerance (BFT) [4].

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 3

Block Header
| Current Block Hash !:*l
T, Pocll Peiossokrian | | P e
e Previous ! evious Bloc | Next - a ¥
Block | Nonce | Block
| Merkle Root |

Block

Body

[| [t | [n | [en |

|Tx||Tx||Tx||Tx|

Fig. 1: Data structure of blockchain.

To encourage all miners to mine on, and maintain, the
current blockchain, a reward is given as an incentive to the
miner by placing a coin-mint transaction in its mined block
that credits the miner with some new coins. If the block is
verified and accepted by other peers in the blockchain network,
the reward is effective and thus can be spent on the blockchain.
When a miner has found an eligible nonce, it publishes his
block to the whole blockchain network. Other miners will
verify the nonce and transactions contained in that block. If
the verification of the block is passed, other miners will mine
on the block (implicitly accepting the block); otherwise, other
miners discard the block and will continue to mine on the
previous legal block.

If two miners publish two different legal blocks that refer
to the same preceding block at the same time, the blockchain
is then forked into two branches. This is called forking of
blockchain. Forks in the blockchain because they are man-
ifestations of disagreement among peers on the blockchain
structure. It can also compromise the integrity and security of
the blockchain [27]]. To resolve a fork, PoW prescribes that
only the rewards of the blocks on the longest branch (called
the main chain) are effective. Then, miners are incentivized to
mine on the longest branch, i.e., miners always add new blocks
after the last block on the longest main chain that is observed
from their local perspectives. If the forked branches are of
equal length, miners may mine subsequent blocks on either
branch randomly. This is referred to as the rule of the longest
chain extension. Eventually, one branch will predominate and
the other branches are discarded by peers in the blockchain
network.

The mining strategy adhering to the rule of the longest chain
extension and publishing a block immediately after the block
is mined is referred to as honest mining [3[|-[5]. The miners
that comply with honest mining are called honest miners. It
was widely believed that the most profitable mining strategy
for miners is honest mining; and that when all miners adopt
honest mining, each miner is rewarded in proportion to its

computing power [3[]-[5]]. As a result, any rational miner will
not deviate from honest mining. This belief was later shown
to be ill-founded and that other mining strategies with higher
profits are possible [15]], [17], [18]. We will briefly discuss
these mining strategies in the next section. For a more concrete
exposition, we will first present the mining model.

III. BLOCKCHAIN MINING MODEL

In this section, we present the Markov Decision Process
(MDP) model for blockchain mining. Ref. [15] first developed
an MDP mining model and used the model to construct
a selfish mining strategy with higher rewards than honest
mining. Then, [[I7] proposed even more profitable selfish
mining strategies. Recently, [18] extended the MDP mining
models of [[15], [17] to a more general form. In this work, we
adopt the mining model of [[18§]].

Without loss of generality, we assume the network is split
into two mining pools: one is an adversary that controls a
fraction of the whole network’s computing power; the other
is the network of honest miners that controls a fraction 1 — «
of the computing power of the whole network.

Even if the adversary and an honest miner release their
newly mined blocks to the network simultaneously, the blocks
will not be received by all miners simultaneously due to
propagation delays and network connectivity. We model the
communication capability of the adversary using the parameter
v, defined as the fraction of the honest miners that will first
receive the block from the adversary when the adversary and
one honest miner release their blocks approximately at a same
time—more specifically, v(1 — «) is the computing power of
the honest network that will mine on the block of the adversary
when the adversary and an honest miner release their blocks
simultaneously.

As in [[18]], we model blockchain mining as a single-player
MDP M = (S, A, P, R), where S is the state space, A is the
action space, P is the transition probability matrix and R is
the reward matrix. Each transition is triggered by the event of

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 4

1(/')
|

PP G
— 1

~ ~ ~ ~
. SN N N\ N\
i (\2,’_ B _(\3,’_ B _(\4/’_ B _(\5/}

l(")
|:| Blocks mined by the honest network

N\
(\/I Blocks mined by the adversary

Blocks accepted by the whole network

Fig. 2: An illustrating example of the state in the adopted
MDP.

a miner mining a new block, whether the block is mined by
the adversary or one of the honest miners. The action taken
by the adversary based on the previous state, together with the
event, determines the next state to which the system evolves.

The objective of the adversary is to earn rewards higher
than its computational power. To achieve this, the adversary
will generally deviate from honest mining by building a
private chain of blocks without releasing them the moment
the blocks are mined; the adversary will release several blocks
from its private chain at a time to undo the honest chain
opportunistically.

State: Each state in the state space is represented by a
three-tuple form (l(a),l(h),fork), where (@) and 1™ are
respectively the lengths of the adversary’s chain and the
honest network’s chain after the latest fork (as illustrated
in Fig.). In general, fork can take three possible values
(irrelevant, relevant, active). Their meanings will be ex-
plained later.

Action: The action space A includes four actions that can
be executed by the adversary.

o Adopt: The adversary accepts the honest chain and mines
on the last block of the honest chain. This action discards
the 1(*) blocks in the chain of the adversary and it renews
the attack from the new starting point without a fork. This
action is allowed by the MDP model for all [(*) and ("),

o Override: The adversary publishes one block more than
the honest chain (i.e., 1 41 blocks) to the whole
network. This action overrides the conflicting blocks of
the honest chain. This action is allowed when [(®) > (%),

e Match: The adversary publishes the same number of
blocks as the honest chain (i.e., {(") blocks) to the
whole network. This action creates a fork deliberately
and initiates an open mining competition between the two
branches of the adversary and the honest network. This
action is allowed when (@) > [(M) and fork = relevant.

o Wait: The adversary does not publish blocks and it just
keeps mining on its own chain. This action is always
feasible.

One remark about the actions of the MDP mining model
is that some actions that can generally be performed are
deliberately removed from the action-state space because these
actions are not gainful for the adversary. For example, when
1@ < (M) the adversary can still release a certain number

of its blocks. However, since releasing fewer blocks than the
number of blocks on the honest chain will not increase its
probability of mining the next block compared to mining it
privately, these actions thus are excluded from the allowed
actions.

We now explain the three values of the entry fork in the
three-tuple state.

e Relevant: The value of relevant means that the latest
block is mined by the honest network. Now, if fork =
relevant and (@) > 1" the action match is allowed.
For example, if the previous state is (l (@) 1(h) — 1, 0) and
now the honest network successfully mines one block,
the state then changes to (1(®), ("), relevant). If at this
time, (@ > (W) match is allowed. We remark that
match here may be gainful for the adversary because
(1 — &) computing power of the honest network would
be dedicated to mining on the adversary chain because of
the near-simultaneous releases of the latest block of the
adversary chain and the latest block of the honest chain.
In this state, as far as the public is concerned, there no
fork yet, since the 1(*) mined blocks of the adversary
are private and hidden from the public. However, if the
adversary execute a match from this state, then a fork will
be made known to the public and an active competition
between the two branches will follow.

e Irrelevant: The value of irrelevant means that the
latest block is mined by the adversary and the blocks
published by the honest network have been already re-
ceived by (the majority of) the honest network. Now,
even if [(@ > [(M) the action match is not allowed. For
example, if the previous state is (¥ —1,1(")) and
now the adversary successfully mines a new block, the
state changes to (I, 1™ irrelevant). We emphasize
that match is disallowed here even if (@) > [(M) not
because it cannot be performed in the blockchain, but
rather match here is not gainful for the adversary. If
match were to be performed here, no computing power
of the honest network would shift to mining on the
adversary chain because the miners in the honest network
would have received the latest block of the honest chain
first (well before the current transition triggered by the
adversary mining a new block) and would have dedicated
to mining on the honest chain already. Again, in this
state, there is no fork as far as the public blockchain
is concerned.

o Active: The value of active means that the adversary
has executed the action match from the previous state,
and the blockchain is now split into two branches. For
example, if the previous state is (l(“),l(h),relevant)
with 1(®) > (") and the adversary executed the action
match. If the new transition is triggered by the honest
network mining a new block, then the state transitions to
(1@ — 1M 1, active). In short, active means a fork is
made known to the public and that an active competition
between the two branches of the fork is ongoing.

Transition and Reward: After the execution of an action,
the occurrence of each state transition is triggered by the

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 5

creation of a new block (either by the adversary or by the
honest network) and the corresponding transition probability
is the probability of the block created by the adversary
(o) or by the honest network (1 —). The initial state
is (1,0, irrelevant) with probability « or (0, 1,irrelevant)
with probability 1 — «. Different actions performed by the
adversary will have different effects on the state transitions.
The specific description is as follows:

o The state transitions after the execution of action adopt:
By executing the adopt action, the adversary accepts all
the blocks on the branch mined by the honest network
and mines on the latest block on the honest chain together
with the honest network. An illustrating example of the
state transitions after the execution of action adopt is
given in Fig. 3] As shown in Fig. [3] with the probability
of a, the adversary can successfully mine the next block
and then the state transits to (1,0, relevant); with the
probability of 1 — «, the honest network can success-
fully mine the next block and then the state transits to
(0,1, relevant).

|
| Probablllty Mk !
K
/_‘ﬁ \(2) \(4)
1K Bl El I State: (Lo,wrmm)
i 2
: _7_], |
" 9l al
[2 3+1]
state: (1),1",) Probability M= = (4]
| 1-a “N@ |

[] stocksminedby thenonestnetwork () Blocks mined by the acersary (private)

State: (0,Lirrelevant)

| | Blocksaccepted by thewhole network () Blocks mined by the honest network (iscarded)

Fig. 3: An illustrating example of the state transitions after the
execution of action adopt.

o The state transition after the execution of action
override: The adversary can only perform action
override when the number of the blocks on its private
branch is greater than the number of the blocks on the
honest branch (i.e., when 1(*) > [(")). By performing
override, the adversary publishes [(™) + 1 blocks from
its private branch to overwrite the latest (") blocks
on the honest branch. After that, the branch of the
adversary becomes the main chain and the whole network
mines on the latest block of the adversary’s branch.
An illustrating example of the state transitions after the
execution of action override is given in Fig. As
shown in Fig. [the adversary has the probability of
a to successfully mine the next block and makes the
state transit to (1(¥ — (") 0, irrelevant); the honest
network has the probability of 1 — o to successfully
mine the next block and makes the state transit to
(l(“) — () —q, 1,relevant).

o The state transition after the execution of action match:
The match action can only be executed when fork =
relevant and when the number of blocks on the private
branch of the adversary is greater than or equal to the
number of blocks on the public branch of the honest

‘ I
23
\ Probability | | 2] !
,m “ 2 34 -(5)

! ")

I
! 1 State: (1)~ 1",0,irre ,)
i \(z)— (;)— (11 \ 1
/—‘—\

‘ Probablllty | . . !
State: (/ A 2 3)—+(4

\
1" -1=0
\ State: (/‘”7—/W71,1,r1'lz'wu/)
D Blocks mined by the honest network (‘) Blocks mined by the adversary (private)
Blocks acoepted by the whol « [by the honest network (discarded)

Fig. 4: An illustrating example of the state transitions after the
execution of action override.

network (i.e., when 1@ > l(h)). After the adversary
performs the match action, a fork will be formed on the
blockchain that is observed by all the miners. After that,
the adversary is still mining on its own branch; however,
due to the fork, a « fraction of the honest network
will mine on the branch published by the adversary,
and the other 1 — ~ fraction of the honest network will
mine on the branch published by the honest network.
An illustrating example of the state transitions after
the execution of action match is given in Fig. As
shown in Fig. 5] the next block may be published by
the adversary on its own branch such that the state
transits to (12 + 1,1 active) with the probability
of «a; the next block may be published by the honest
network on the branch of the adversary such that the state
transits to (l(“) — 1), 1,relevant) with the probability
of v (1 — «); the next block may be published by the
honest network on the branch of the honest network such
that the state transits to (1(*), 1) + 1 relevant) with
the probability of (1 —~) (1 — «). We must emphasize
that after the execution of action match, among the
1(2) blocks of the adversary, some of the blocks may
be private while other blocks are public. Which parts
of blocks are private/public are implied by the state
implicitly. For example, suppose that the previous state is
(l(“), 1), Televant) with 1(#) > (") (as illustrated in the
left part of Fig. [5)) and the action match is performed. If
the adversary subsequently mines a new block on its own
branch, then the state changes to (1) + 1,1 active),
where there are 1(4)4-1—1(") private blocks and I(") public
blocks among the 1(*) + 1 blocks owned by the adversary
(as illustrated by the first case in the right part of Fig. [5).
If the honest miners mine a new block on the adversary’s
branch, the state changes to (l(“) — l(h),l,relevant),
where there are 1(*) — [(") private block left for the
adversary (as illustrated by the second case in the right
part of Fig. [5). If the hones miners mine a new block
on the honest network’s branch, the state changes to
1(2) — (M) where there are 1*) — (") private blocks and
(") public blocks among the 1(*) blocks owned by the
adversary (as illustrated by the third case in the right part
of Fig. [5).

The state transition triggered by action waztt: The wait
action means that the adversary does not perform any

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 6

Im
|

Probability | ‘ . .
“ O—O)--(Tr-(5
=z ¥ = =

\

\

\

\

| 1941
‘ State: (/“” +I,/"",ncmw)
\

1" =1
—~

G \ Povetilty
"N @B ~(D) | 7(-a) RO —(T

o
\

/Ir'\ ‘ /l) /U)
State: (/m‘,Urw‘,.‘,lmw,,) S(ate:(/““ —/“"‘Ln.lc\mn)

\

\

\

‘ Probablllty
7)(1-a)

\ |

\

/@
‘ State: (I“”,I‘ "y I,l'alc*un/)

() Blocksmined by the adversary (private) D Blocks mined by honest network

O stocks mined by honest neawork (pdic (] stocks mined by honest network (dscarcec)

‘ ‘ (") Blocksaccepted by thewhole network

Fig. 5: An illustrating example of the state transitions after the
execution of action match.

actions and continues to mine on its private branch.
After the action wait is executed, if fork # active,
the adversary and the honest network mine on their
own branches respectively. An illustrating example of
the state transitions after the execution of action match
when fork # active is given in Fig. [f} As shown in
Fig. [l when fork # active, the next new block may
be mined by the adversary on its own private branch
such that the state changes to (I + 1,10 irrelevant)
with the probability of «; or the next new block may
be mined by the honest network on the public branch
such that the state changes to (I(®),1(") + 1, relevant)
with the probability of 1 — a. After the action wait is
executed, if fork = active, due to the fork that can be
observed by the whole network, the mining behaviors of
all miners are the same as that after the execution of
the match action. An illustrating example of the state
transitions after the execution of action match when
fork = active is given in Fig. [7] As shown in Fig.
when fork = active, the next new block may be
mined by the adversary on its own branch such that the
state changes to (I(*) + 1,1 active) with probability
a; or the next new block may be mined by the honest
network on the branch of the adversary such that the
state changes to (l(a) —1M 1, relevant) with probabil-
ity 7 (1 —); or the next new block may be mined by
the honest network on the branch of the adversary such
that the state changes to (I(“),1(") + 1, relevant) with
probability (1 —) (1 — «).

The reward is given as a tuple (r(®),r(™), where r(®
denotes the number of blocks mined by the adversary and
accepted by the whole network, and (") denotes the number
of blocks mined by the honest network and accepted by the
whole network. The state transitions and reward matrices are
given in TABLE L.

| .
| | —t—
| -
Probabilit) 1 — —~ —~
R O OO
‘ Il I 1
! ¥ | state: (1) +1,1"), irrelevant)
: SN Z - 3) |
;'—/1 ™41
@ | Probability } —
o _ e
State: (I i ,rzl[z’vanl/lrr()[l’vanl)| i ‘ 1 o - —
1 P

| l(ul
| State: (IM,I“'] +1, r()[ﬂvun/)
|:| Blocks mined by the honest network (\) Blocks mined by the adversary (private)

‘ Blocks accepted by the whole network

Fig. 6: An illustrating example of the state transitions after the
execution of action wait when fork # active.

Ial

| —Y
| 2 3
Probability [1} [2J—3] .
i 9 0 _4\4,/
- -
141
State: (/“"Jr],/“'],acrive)
1M=1
I | —~
| P B
\‘ : Probablllty ‘1 ‘
S : 3
N0 Y e

/(@
State: (/‘“] —/“'),l,/‘e/evun/)
State: (/“’]‘l“"‘uuive)

1" 41

|
Probablllty | ‘
I
N0
N

I[“)
State: (I“”_l‘hy +]_ru/uwml)

N

O Blocks mined by honest network (public) D Blocks mined by honest network

‘ ‘ () Blocksaccepted by the whole network D Blocks mined by honest network (discarded)

Fig. 7: An illustrating example of the state transitions after the
execution of action wait when fork = active.

Objective Function: The objective of the adversary is to
find the optimal mining strategy that can earn as much reward
as possible. Since blockchain keeps adjusting the mining
difficulty (i.e., the mining target on the RHS of inequality (1))
to ensure that on average one valid block is introduced to the
overall blockchain per valid block interval (e.g., one block per
10 minutes for Bitcoin, and per 10-20 seconds for Ethereum),
the mining objective of the adversary is not to maximize its
absolute cumulative reward, but to maximize the ratio of its
cumulative rewards over the cumulative rewards of the whole
network (i.e., the cumulative rewards of the whole network
advance by one reward per block interval—rewards of all
miners/Time is fixed to 1 per block interval; then maximizing
adversary rewards/Time is equivalent to maximizing the ratio
of adversary rewards/Time to rewards of all miners/Time
= adversary rewards/rewards of all miners). We emphasize

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 7

TABLE I: The state transitions and reward matrices of the MDP mining model.

The action override is allowed when {(®) > [("); the action match is allowed when ((*

that blocks mined by the adversary and the honest network
that are discarded due to losing out in the competition are
not considered as having been successfully introduced to the
blockchain. Thus, the principle behind the strategy of the
adversary is to maximize the number of blocks mined by the
honest network that are later discarded while reducing its own
discarded blocks.

As in [18], we define the following relative mining gain
(RMG@G) as the objective function for blockchain mining:

Zt-‘rT—l r(a)

hm T=t 741

RMG=FE 2)
T—1 (a T—1 (h
Too STy v SH]

where (rﬁa) rih) is the tuple of rewards issued in the block

interval ¢, T is the size of the observing window. The objective
of the adversary is to maximize this relative mining gain.

Under the above MDP mining model, we can now interpret
honest mining, selfish mining [[15]], lead stubborn mining [[17]]
as examples of different mining strategies.

Honest Mining: For honest mining, miners will follow
the rule of the longest chain extension. Thus, they will not
maintain a private chain: when they have a new block, they
will immediately publish it. The honest mining strategy can
be written as

adopt 1@ < j(h)
HM (l(“),l(h),o) = wait [(@) — () (3)
override 1 > (M)

where we note that (@), [(®) can only take a value of O or 1.

Selfish Mining: The main idea of selfish mining [15] is
described as follows. If one block is found by the adversary,
it does not publish it immediately and it keeps mining on
its private chain. When the adversary already has one private
block and then honest network publishes one block (immedi-
ately after an honest miner mines a new block), the adversary
chooses to publish its block to match the honest network. This
causes (1 — a) computing power of the honest network to
mine on the adversary’s chain. When the adversary already has
some private blocks and then honest network catches up with
only one block less than the adversary (") = 1(®) —1 > 1), the
adversary overrides the honest network’s block by publishing

Current State, Action Next State Transition Probability | Reward
o (1,0, irrelevant) @
(i), i .) adopt (0,1, srrelevant) 11—« (0, l<h))
(@) —_ () 0.4
(l(‘”, l(h),o) ,override 8(&) — g(h)’_o’llrzeizzl)::;{t) (11— - (l(h) +1,0)
(l(a)7 l(h),irrelevomt) S wait (l(a> +1, l<h),i7’7’elevant) e (0,0)
1(a), l<h),rel6vant) Jwait (l(‘”7 1) 4 1, relevant) 1—a (0,0)
1(@)] l(h),(zctive) , wait (l(“) +1, l(h),active) @ (0,0)
(l(a>, N relevant) ,match 1(a) () 1, relevant) (1 —a) (l(h) , 0)
(1T, 1™ 11, relevant) 1-—7)1-a) (0
)

all its blocks. The selfish mining strategy can be written as

adopt 1@ < ()
(a) 7(h) . match (@) — ((h) — 1
SM (l L ’.) h override (W) =@ _1>1
wait otherwise

“)
Lead Stubborn Mining: Lead stubborn mining [17] is
different from selfish mining in the following way. A lead
stubborn miner always publishes one block from its private
chain to match with the honest network when the honest
network mines a new block if /() > [(®)_ The adversary never
executes the action override. The lead stubborn mining can be
written as

LSM (1, 1™ fork)

adopt 1) < 1M Y fork)
= match otherwise
wait 1(9) > [W) | fork = irrelevant

It is shown that this lead stubborn mining can achieve higher
profits than selfish mining [[17].

Optimal Mining: Although there are many possible mining
strategies that can obtain profits higher than honest mining,
the optimal mining strategy is not obvious. Since the state-
action space of the MDP is huge, it is not straightforward
to derive the optimal mining strategy. The relative mining
gain objective (2) is a nonlinear function of the rewards,
and thus the corresponding MDP cannot be solved using
standard MDP solvers to give the optimal mining strategy. To
solve this problem, [18] first transformed the MDP with the
nonlinear objective to a family of MDPs with linear objectives,
and then employed a standard MDP solver combined with a
numerical search over the family of MDPs to find the optimal
mining strategy. As shown in [18]], its solution indeed can
find the optimal mining strategy. However, the solution of
[18]] is model-based approach: it must know the parameters
that characterize the MDP model exactly (i.e., the computing
power distribution «, the communication capability). In real
blockchain networks, these parameters are not easy to obtain
and may change over time, hindering the use of the solution
proposed in [[18]. We propose a model-free approach that
solves the MDP with the nonlinear objective using RL.

IV. MINING THROUGH RL

This section first provides preliminaries for RL and then
presents a new RL algorithm that can derive the optimal

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 8

mining strategy without knowing the parameters of the en-
vironment. We propose the new RL mining algorithm based
on Q-learning, one popular algorithm from the RL family.

A. Preliminaries for Original Reinforcement Learning Algo-
rithm

In RL, an agent interacts with an environment in a sequence
of discrete time steps, ¢ = 0,1,2,..., as shown in Fig. [§
At time ¢, the agent observes the state of the environment,
s;; it then takes an action, a;. As a result of the state-action
pair, (s, a:), the agent receives a scalar reward 7,1, and the
environment moves to a new state sy at time ¢ + 1. Based
on s;;1, the agent then decides the next action a;i;. The
goal of the agent is to effect a series of rewards {r:},_; 5
through its actions to maximize some performance criterion.
For example, for Q-learning [21]], the performance criterion to
be maximized at time ¢ is the discounted accumulated rewards
going forward R, = > 07 A" 'r 44, where A € (0,1) is a
discount factor for weighting future rewards [[19]]. In general,
the agent takes actions according to some decision policy 7.
RL methods specify how the agent changes its policy as a
result of its experiences. With sufficient experiences, the agent
can learn an optimal decision policy 7* to maximize the long-
term accumulated reward [19]].

The desirability of state-action pair (s, a;) under a decision
policy decision 7 is captured by a Q function, defined as
Q(s,a) = [R¢|st=s,ar =a,7], ie., the expected dis-
counted accumulated reward going forward given the current
state-action pair (s, a;). The optimal decision policy 7* is
one that maximizes Q function. In Q-learning, the goal of
the agent is to learn the optimal policy 7* through an online-
iterative process by observing the rewards while it takes action
in successive time steps. In particular, the agent maintains the
Q function, Q(s, a), for all state-action pairs (s, a), in a tabular
form.

Let ¢ (s,a) be the estimated action-value function during
the iterative process. At time step t, given state s;, the agent
selects a greedy action a; = argmax,q(s;,a) based on its
current Q function. This will cause the system to return a
reward r,11 and move to state s;;. The experience at time
step ¢ is captured by the quadruplet e; = (s¢, at, 7441, St41)-
At the end of time step ¢, experience e; is used to update
q(st,a) for entry (sg,a;) as follows:

q(st,ae) < (1= B)q(se,ar) + 8 [Tt-&-l + AH%I%}XQ (8t+1, a')}

(6)
where 5 € (0,1] is a parameter that governs the learning
rate. Q-learning learns from experiences gathered over time,
{et}t=0.1,..., through the iterative process in (6). Note that Q-
learning is a model-free learning framework in that it tries to
learn the optimal policy without having a model that describes
the operating behavior of the environment beyond what can
be observed through the experiences.

As a deviation from the above description, a caveat in
Q-learning is that the so-called e-greedy algorithm is often
adopted in action selection. For the e-greedy algorithm, the
action a; = arg max,q(s¢,a) is only chosen with probability

action q,
%&%’ 2
Agent |
T reward r, [P
T
l¢
state s I S

'

Fig. 8: The agent-environment interaction process of RL
algorithm.

1 —e. With probability €, a random action is chosen uniformly
from the set of possible actions. This is to avoid the algorithm
from zooming in to a local optimal policy and to allow the
agent to explore a wider spectrum of different actions in search
of the optimal policy [19].

It has been shown that in a stationary environment that can
be fully captured by an MDP, the Q-values will converge to
optimality if the learning rate decays appropriately and each
action in the state-action pair (s,a) is executed an infinite
number of times in the process [19].

B. New Reinforcement Learning Algorithm for Mining

The original RL algorithm as presented in Section IV.A
cannot be directly applied to maximize the mining objective
function expressed in (2); there is one fundamental obstacle
that must be overcome. The obstacle is the nonlinear combi-
nation of the rewards in the objective function. The original
RL algorithm can only maximize an objective that is a linear
function of the scalar rewards, e.g., the weighted sum of scalar
rewards. To address this issue, we put forth a new algorithm
that aims to optimize the original mining objective: the multi-
dimensional RL algorithm.

We formulate the multi-dimensional RL algorithm as fol-
lows. At mined block interval E| t(t=0,1,2,.--), the state
s¢ € S takes a value from the state space S as defined
in the MDP model of blockchain mining, and the action
a; € A is chosen from the action space A. The state
transition occurs according to TABLE I. The reward is the pair
(rgi)l, Tt(i)1 whose value is assigned according to TABLE I.
The experience at the end of mined block interval ¢ is given

by e; = (st, ag, Se11, rgi)l, rg?l). The objective of the multi-

3A mined block interval is different from a valid block interval. A valid
block interval separates two valid blocks that are ultimately adopted by the
blockchain. The average duration of a valid block interval is a constant in
many blockchain systems (e.g., 10 min in bitcoin). The average duration of
the valid block interval is defined by the system designer and its constancy is
maintained by adjusting the mining target. A mined block interval separated
two mined (by either the adversary of the honest network), regardless of
whether the blocks becomes valid later. In the MDP model, each transition is
triggered by the mining of a new block. Thus the average duration of a mined
block interval is the average time separates two adjacent transitions. Due to
the actions of the adversary, some of the mined blocks (by the adversary of
the honest network) may be discarded later.

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 9

dimensional RL algorithm is to maximize the relative mining
gain as expressed in (2).

For a state-action pair (s¢,a;), instead of maintaining an
action-value scalar (s, a), the multi-dimensional RL algo-
rithm maintains an action-value pair (Q(@(s,a), Q" (s,qa))
corresponding to the Q function values of the adversary and
the honest network, respectively. The Q functions defined by
Q learning are the expected cumulative discounted rewards.
Specifically, Q(® (s,a) and Q" (s, a) are defined as

T
QW (s,a) = E I:Th—{{l)o ZT:t)\r—trgi)l |s; = s,a; = aﬂr]
T
Q(h)(s,a):E{hm Z ATt () st:s7at:a,7r]
T— o0 T=
(7

‘r+1
Suppose that at mined block interval ¢, the Q functions in (7)
are estimated to be ¢(*) (s, a), ¢™ (s, a). For action selection,
we still adopt the e-greedy approach. To select the greedy
action, we construct the following objective function:

B ¢\ (s,a)
f(s,&) - q(a)(s,a) —|—q(h)(s,a)

After taking action ay, the state transitions to s;4; and the
(a) .(h)

Ti41s Tt+1

®)

reward pair () is issued. With the experience e; =

Sty Gty St41, ri +)1, rii)l) , the multi-dimensional RL algorithm
updates the two Q functions as follows:

q(a)(st,at)
«~[1-p) q(a)(sta ar) + B [Tgi)l + M@ (St+1,a/):|
q(h)(st’at)
— (1 -8 g™ (s,ar) + 8 {”’t(i)l +2q™ (sp41, a’)}

where a’ = argmax, f (s;41,a). Note that the update rule of
(9) is very similar to the update rule of Q learning, except that
the greedy action @’ is chosen by maximizing the constructed
objective function in (8) rather than maximizing the Q function
itself as in Q learning. From the expressions in (7) and (8),
we can verify that the adopted objective function in (8) is
consistent with the relative mining gain objective function
defined in (2), except the discount terms A7~! used in the
computation of the Q functions. The use of discount terms can
ensure that the Q functions can converge to some bounded
values; however, adding discount terms to the rewards will
change the original mining objective. One simple way to
ensure strict objective consistency is to set A = 1. Although
the setting of A = 1 will result in unbound values for the Q
functions as the RL iteration gradually progresses to infinite
time steps, this is not a big problem as long as the Q function
values do not overflow during the execution of the algorithm.
In practice, we can also set A to be very close to one.

The RL algorithm expressed by the Q function updates in
(9) is our multi-dimensional RL algorithm. We introduce one
additional technical element to the e-greedy action selection,
as explained in the next paragraph.

As described above, when we select the action, we adopt
the e-greedy strategy that allows us to select the current best
action (a; = argmax,f (s¢,a)) with probability 1 — ¢ and

€))

to randomly select an action with probability €. This random
action selection is used to explore some unseen states and
can avoid trapping at local optimal maximums. However, the
tuning of parameter ¢ is not straightforward. A large ¢ reduces
the possibility of trapping at local optimal maximums but it
also decrease the average reward, since it wastes a fraction
of the time to explore non-optimal states. In our algorithm,
we adopt the following strategy for dynamically tuning the
parameter €. Denote the number of times state was visited by
V (s¢). Then, the & parameter used at state s; for performing
e-greedy action selection is given by

£ (51) = exp <_ V:ﬁ?))

where T is a temperature parameter that governs how fast
we gradually reduce the e parameter. The pseudo-code of
our multi-dimensional RL algorithm for blockchain mining is
given in Algorithm 1.

(10)

Algorithm 1 Multi-dimensional RL Algorithm for Blockchain
Mining

Initialize ¢(*) (s, a
Initialize ¢ (s,a) =
Initialize V (s) = O,Vs;
Initialize T, A, f3;
for t=0,1,2,--- do
Receive s;, r; from the blockchain environment;
Generate action a; = SELECTACTION(S;);
Input a; to the blockchain environment;
Observe s;41, rt(i)l, rt(i)l from the blockchain environ-

ment;
q(a>(5t+1,a)
q(@ (st41,0)+¢M (s¢41,a)

Compute a’ = arg max
Update

g\)(Staat
~(1-8
(St» a:)

(—B) 4™ (s1,a:) + B [Tt(ﬂ + Agt™) (St+1va/)] ;

end for

procedure SELECTACTION(S)

Compute € (s;) = exp <_%)’

)
)

¢\ (s¢,a0) + B [Tﬁ)l + A" (se41, a’)} ;

if random < ¢ (s;) then
randomly select an action a; from A;
else

(a)(st a)
a; = arg max

X @ Gra) g™ (sra)’

end 1freturn at
end procedure

V. PERFORMANCE EVALUATIONS

We have conducted simulations to investigate our proposed
RL mining strategy. Following the simulation approach used
in [[15]], we constructed a Bitcoin-like simulator that captures
all the relevant PoW network details described in previous

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 10

=1
1 0l
RL mining o
09r honest mining 1
O selfish mining o
0.8 al(1-a) < 1
O optimal policy o

07} / .
B L g O
g 0.6 o
@ o
051 o
£ O
<
Eo4t Jog o

pegn
03f g% .
e g
02F e
g
g
0.1f o9
pcy
ey
0 G L L L
0 005 01 015 02 025 03 035 04 045 05

Fig. 9: Achieved mining gain versus « for v = 1.

=05

RL mining

honest mining

O selfish mining [u]
al(1-a)

O optimal policy

mining reward
o
o
T

0 005 01 015 02 025 03 035 04 045 05

Fig. 10: Achieved mining gain versus « for v = 0.5.

sections, except that the crypto puzzle solving processing was
replaced by a Monte Carlo simulator that simulates the time
required for block discovery without actually attempting to
compute a hash function. We simulated 1000 miners mining
at identical rates (i.e., they each can have one simulated hash
test at each time step of the Monte Carlo simulation). A subset
of the 1000 miners (1000a: miners) forms an adversary pool
running a malicious mining strategy that co-exists with honest
mining adopted by the other 1000(1 — «) miners. When co-
existing with honest mining, the malicious mining strategy
is one of the following mining strategies: i) our RL mining
strategy, ii) the optimal mining strategy derived in [[18]] or iii)
the selfish mining strategy derived in [15]. Upon encountering
two subchains of the same length, we divide the honest
miners such that a fraction v of them mine on the attacking
pool’s branch while the rest mine on the other branch. The
performance metric used is the relative mining gain (RMG)

computed over a window consisting of T, = 10° time
A t+Tw—1 (a) t+Ty—1 (a) t+Tyw—1 (h)
Steps' ZT:t TT+1 ZT:t TT+1 + ZT:t TT+1 :

The hyper-parameters used in the RL algorithm are set to as
A =0.999, 5 = 0.05.

We first compare the performances of our RL mining, the
optimal-policy mining, and the selfish mining. Fig. O}{IT] plots

RL mining
honest mining
O selfish mining
al(1-a) b
O optimal policy

o
©

o
®
T

mining reward
o o o o o
w e o (2] ~
.

o
o
E&b
o
[n!
L

o
[a]
o
L

o

Fig. 11: Achieved mining gain versus « for v = 0.

the mining reward of the adversary versus o« for different
values of v and v € {0,0.5,1}. Note that the value of v
ranges in the interval [0, 1]. Therefore, v =0,v=0.5, vy =1
respectively means a low, a median, and a high communication
capability for the adversary. We just take these three values
for « to demonstrate that the adversary with our RL mining
can dynamically adapt to the optimal mining when it has
different communication capability. The relative mining gain
of a/(1 —) is treated as a bound for the mining problem
and it can only be achieved by optimal-policy mining for
v = 1. To derive the optimal policy, we adopt the search
algorithm proposed in [18]] and set the search error to a very
tiny number of 1075. As in [18], we truncate the MDP at
1(4) =100 or I® = 100 for both of optimal-policy mining
and RL mining. The temperature parameter 7. is set to as
T. = 10* and it is reset to 7. = 0 after ¢t = 10® time steps
when convergence is attained. All the results of RL mining are
given after the algorithm has converged. From the results, we
can see that the performance of our RL mining can converge
to the performance of optimal-policy mining without knowing
the details about the environment model.

We next consider the impact of the temperature parameter
T. on the convergence of RL mining. Fig. [I2}{I4] present
the mining rewards obtained by RL mining with different
T. over time for v € {0,0.5,1}, respectively (« is fixed
to 0.45). In fact, the parameter of 7. determines the extent
of the exploration performed by the RL algorithm in its
learning process. A larger T, encourages more explorations,
and eventually, the learning process can converge, although a
larger T, needs more time to converge. The optimal value of
T, can lead to the convergence of RL by enough explorations
and does not waste learning time by having unnecessary
explorations. How to tune to the optimal 7; is an interesting
research direction. In this work, we just investigate the impact
of T, on our RL mining by simulations. From the simulation
results in Fig. we can see that generally, RL mining
with larger T, can have more explorations and can converge
more closely to the optimal performance; however, RL mining
with larger 7. also have longer exploration phases that slow
down the convergence process. Fig. [I3] presents the mining

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 11

0.9

0.8

o
3

o
o

mining reward
o
o
.

=}
'S
T

——T =10

T =10?

¢

0.3 e T =108 1
¢

4

——T =10

0.2

0 1 2 3 4 5 6 7 8 9 10
t %108

Fig. 12: Achieved mining gain versus time step for different
T. and v =1, a = 0.45.

~v=0.5, a=0.45

0.6

mining reward

—O—thﬂjw

T =102
.

3
03 ——T=10°] |

——T=10*

o 1 2 s 4 5 5 7 8 9 10
t x10°
Fig. 13: Achieved mining gain versus time step for different
T. and v = 0.5, a = 0.45.

rewards of RL mining with different 7, for different o (v is
fixed to 1). The mining reward results are given after ¢t = 107
time steps and without resetting 7, = 0. We see that for
larger «, we need larger 7, to ensure the convergence of RL
mining, although it will slow down the convergence process.
In practice, we can dynamically reduce the value of 7. when
we find that the mining gain has already converged.

Last, we investigate the mining performances of dif-
ferent mining strategies when the blockchain environment
changes. The experimental results are given in Fig. [TI8]
The blockchain environment starts with parameter values of
(e = 0.35,y= 1) and the values of («,) change sequentially
in the experiment. The temperature parameter 7, of RL mining
is fixed to 7. = 10%. The optimal-policy mining strategy
adopts the optimal policy for the blockchain environment
with (o =0.35,7=1). We derived the optimal policy for
(o =0.35,y= 1) by iteratively exploit the MDP solver [28]
to search over the policy space, as proposed in [[18]. TABLE
II describes the found optimal policy for (o = 0.35,y=1)
when (@ < 8 and I™ < 8. The performances of the
optimal policy for (o = 0.35,7= 1), and the selfish mining

0.5

I
~

mining reward

——T =10

T =10
0.3 J

——T=10%
¢

——T 10

o 1 2 s 4 5 s 7 8 9 10
t x108
Fig. 14: Achieved mining gain versus time step for different
T. and v = 0, a = 0.45.

1 : : :
—— RL Mining, TF:1O

—A— RL Mining, T =107
—6—RL Mining, T =103

o
©
T

o
©
T

—&— RL Mining, T =10*
— % — Selfish Mining
Honest Mining
— — — Upper bound and optimal policy

I
3
T

o
o
T

mining reward
© o o ©
n w = (6]
: : : .

o
T

oLt
0 005 01 015 02 025 03 035 04 045 05

Fig. 15: Achieved mining gain versus the o for v = 1 and
different 7.

are treated as benchmarks for our RL mining in the changing
blockchain environment. In Fig. 16-18, for different values
of the parameters (), the performances of optimal selfish
mining are still obtained using the policy of the optimal selfish
mining under model parameters (o,) = (0.35,1). From the
simulation results, we can see that when the environment
has changed, the optimal-policy mining strategy derived from
the MDP model is not optimal anymore; our RL mining can
adaptively learn the optimal policy for different environments.
This demonstrates the advantage of RL mining over these
model-based mining strategies.

VI. CONCLUSION

We employed RL algorithms to solve the mining MDP
problem of Bitcoin-like blockchains. We showed that, without
knowing parameters about the blockchain network model, our
RL mining can achieve the mining reward of the optimal
policy that requires knowledge of the parameters. Therefore,
in a dynamic environment in which the parameter values can
change over time, RL mining can be more robust.

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 12

TABLE II: The optimal policy for the blockchain environment
with (o = 0.35,7= 1) when [(®) < 8 and I(") < 8.

IR 2 3 4 5 6 7 8

1 kE EPEs FRF HRF T RkE T *RF
2 W** *m* *W* *a* koksk koksk koksk sokosk
3 W** *00 W** *W* *a* sekosk seksk sfekosk
4 Wk Fm* 00%* W Hyyk *gk kg sk
5 W** *mw *m* 00* W** *W* *W* *a*
6 wHE Ffmw *mw Fm* 00%* wHE wwE kg
7 w*t - Fmw fmw *mw F*m* 00* wHE ww*
8 w*F Ffmw *mw *mw fmw *m* o0o* wHE

0.8 | .

—=— RL mining
0.7 @ selfish mining 4
— = — optimal policy for (a, 7) = (0.35,1)

0.6F (a) = (0. (o,) = (0.35,0.5) (a,7)=(0350)

mining reward
o
ke

t %108

Fig. 16: Achieved mining gain when the environment is
changing and the values of («,~) change in the following
order: (0.35,1), (0.35, 0.5), and (0.35,0).

Going forward, we will investigate two issues that need to
be addressed before RL mining can be practical:

1. More complete MDP model as proposed in [29]
for blockchain networks—This model incorporates detailed
blockchain features, such as stale block rate, double spending
attack, and eclipsed attack, that have been precluded by the
model in the current paper. The large action-space of the
complete model will make it more challenging for RL mining
to learn an optimal strategy.

2. Cost of lagged time in convergence—Since miners need
to pay for their hardware and consume electricity to mine
blocks, fast convergence of the mining algorithm is important
from the economical standpoint. Deep RL [22]] that incorpo-
rates deep neural networks into RL can potentially speed up
the convergence rate. We will consider the exploit of deep RL
in our future work.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” [Online].
Available: http://bitcoin.org, 2008.

[2] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. O’Reilly Media, Inc., 2014.

[3] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084-2123, 2016.

[4] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” IEEE Access, vol. 7, pp. 22328
- 22370, 2019.

0.8 T :
—=— RL mining
07¢F @ selfish mining 4
’ — ¥ —optimal policy for (a, v) = (0.35,1)
06 (a,7)=(0.351 (a, 7) = (0.35,0) (a,) = (0.35,0.5)
o 05
©
=
]
o 04
c
<
€03
0.2
0.1
0

t %108

Fig. 17: Achieved mining gain when the environment is
changing and the values of («,<) change in the following
order: (0.35,1), (0.35, 0), and (0.35,0.5).

0.8 T T T T T T T T T T T T T T
—=— RL mining

0.7+ @ selfish mining 4
— ¥ —optimal policy for («, v) = (0.35,1)

0.6 (v,) = (0.35,1) (a, 7) =(0.35,0) (@, 7) =(0.15,0)

mining reward
o
IS

10 11
t %108

12 13 14 15

Fig. 18: Achieved mining gain when the environment is
changing and the values of («,~) change in the following
order: (0.35,1), (0.35, 0), and (0.15,0).

[5] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das,
“Everything you wanted to know about the blockchain: Its promise,
components, processes, and problems,” IEEE Consumer Electronics
Magazine, vol. 7, no. 4, pp. 6-14, 2018.

[6] K. Fanning and D. P. Centers, “Blockchain and its coming impact on
financial services,” Journal of Corporate Accounting & Finance, vol. 27,
no. 5, pp. 53-57, 2016.

[71 M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and
H. Janicke, “Blockchain technologies for the internet of things: Research
issues and challenges,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp- 2188-2204, 2018.

[8] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076-8094,
2019.

[9] S. A. Abeyratne and R. P. Monfared, “Blockchain ready manufacturing

supply chain using distributed ledger,” 2016.

C. Dwork and M. Naor, “Pricing via processing or combatting junk

mail,” in Annual International Cryptology Conference. Springer, 1992,

pp. 139-147.

J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:

Analysis and applications,” in Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 2015,

pp- 281-310.

R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol

in asynchronous networks,” in Annual International Conference on the

[10]

(11]

(12]

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643-673.

C. Lee, “Litecoin-open source p2p digital currency,” [Online]. Available:
https://litecoin.com/en/, 2011.

V. Buterin, “Ethereum: A next-generation smart contract
and decentralized application platform,” [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper, 2014.

I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Communications of the ACM, vol. 61, no. 7, pp. 95-102,
2018.

D. Kraft, “Difficulty control for blockchain-based consensus systems,”
Peer-to-Peer Networking and Applications, vol. 9, no. 2, pp. 397413,
2016.

K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P). 1EEE,
2016, pp. 305-320.

A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2016, pp. 515-532.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘“Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237-285, 1996.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889-1897.

R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369-378.

M. Wang, M. Duan, and J. Zhu, “Research on the security criteria of hash
functions in the blockchain,” in Proceedings of the 2nd ACM Workshop
on Blockchains, Cryptocurrencies, and Contracts. ~ACM, 2018, pp.
47-55.

V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Decon-
structing the blockchain to approach physical limits,” arXiv preprint
arXiv:1810.08092, 2018.

I. Chadeés, G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin,
“Mdptoolbox: a multi-platform toolbox to solve stochastic dynamic
programming problems,” Ecography, vol. 37, no. 9, pp. 916-920, 2014.
A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, 2016, pp. 3-16.

	I Introduction
	II Blockchain Preliminaries
	II-A Proof of Work and Mining
	II-B Honest Mining Strategy

	III Blockchain Mining Model
	IV Mining Through RL
	IV-A Preliminaries for Original Reinforcement Learning Algorithm
	IV-B New Reinforcement Learning Algorithm for Mining

	V Performance Evaluations
	VI Conclusion
	References

