
THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 1

When Blockchain Meets AI: Optimal Mining

Strategy Achieved By Machine Learning
Taotao Wang, Soung Chang Liew, and Shengli Zhang

Abstract—This work applies reinforcement learning (RL) from
the AI machine learning field to derive an optimal Bitcoin-like
blockchain mining strategy. A salient feature of the RL learning
framework is that an optimal (or near optimal) strategy can
be obtained without the knowing the details of the blockchain
network model. Previously, the most profitable mining strat-
egy was believed to be honest mining encoded in the default
blockchain protocol. It was shown later that it is possible to
gain more mining rewards by deviating from honest mining. In
particular, the mining problem can be formulated as a Markov
Decision Process (MDP) which can be solved to give the optimal
mining strategy. However, solving the mining MDP requires
knowing the values of various parameters that characterize the
blockchain network model. In real blockchain networks, these
parameter values are not easy to obtain and may change over
time. This hinders the use of the MDP model-based solution.
In this work, we employ RL to dynamically learn a mining
strategy with performance approaching that of the optimal
mining strategy. Since the mining MDP problem has a non-linear
objective function (rather than linear functions of standard MDP
problems), we design a new multi-dimensional RL algorithm to
solve the problem. Experimental results indicate that, without
knowing the parameter values of the mining MDP model, our
multi-dimensional RL mining algorithm can still achieve optimal
performance over time-varying blockchain networks.

Index Terms—Blockchain, Proof-of-work, Selfish Mining,
MDP, Reinforcement Learning.

I. INTRODUCTION

THE early digital cryptocurrencies rely on central authori-

ties to settle transactions. Digital cryptocurrencies did not

flourish, until the advent of Bitcoin [1], [2]. To avoid single

points of failure, Bitcoin is designed as a decentralized system

without a central authority that could be compromised by

corruption and attacks [1]. Since the birth of Bitcoin in 2008,

it has become a widely accepted currency all over the world.

In early 2018, the market price of Bitcoin went as high as

20,000 US dollars, reflecting robust demands and enthusiasm

for Bitcoin by the public.

The security of Bitcoin is built on the foundation technol-

ogy of blockchain. Blockchain contains several key technical

components, including its chained data structure, peer-to-peer

network protocol, and distributed consensus algorithm [3]–[5].

T. Wang and S. Zhang are the College of Electronics and Informa-
tion Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
ttwang@szu.edu.cn; zsl@szu.edu.cn).

S. Liew is with the Department of Information Engineering, The
Chinese University of Hong Kong, Hong Kong SAR, China (e-mail:
soung@ie.cuhk.edu.hk)

This research was funded by the National Key R&D Program of China
(2018YFB2100705) and the Natural Science Fund of Guangdong Province
(2020A1515010708).

Blockchain has become a cutting-edge technology in FinTech

[6], Internet of Things (IoT) [7], [8], and supply chains [9].

The Bitcoin’s blockchain is not controlled by a central author-

ity; it is assembled by peers in the network independently in

a distributed manner. In order that the blockchains maintained

by different peers are consistent, the peers must agree on a

single universal truth about the transactions of Bitcoin through

a consensus-building process.

Consensus in the Bitcoin network is achieved by the

proof-of-work (PoW) consensus algorithm. The idea of PoW

originated in [10] and is rediscovered and exploited in the

implementation of Bitcoin. PoW provides strong probabilistic

consensus guarantee with resilience against up to 1/2 malicious

nodes [11], [12]. The successful operation of Bitcoin demon-

strates the practicality of using PoW to achieve consensus.

Subsequent to Bitcoin, many other cryptocurrencies, such as

Litecoin [13], Ethereum [14], also adopt the PoW consensus

algorithm.

Peers running the PoW consensus algorithm are miners who

compete to solve a difficult cryptographic hash puzzle, called

the PoW problem. The miner who successfully solves the PoW

problem obtains the right to extend the blockchain with a block

consisting of valid transactions. In doing so, the miner receives

a reward in the form of a newly minted coin written into the

added block. Solving the PoW problem for rewards is called

mining, just like mining for precious metals.

Miners commit computation resources to solve the PoW

problem. Previously, it was believed that the most profitable

mining strategy is honest mining, wherein a miner will broad-

cast the newly added block as soon as it has solved the PoW

problem. Let α be the ratio of a particular miner’s computing

power over the computing powers of all miners. This ratio is

also the probability that the miner can solve the PoW problem

before others in each round of an added block [3]. Over the

long term, the rewards to a miner that executes the honest

mining strategy are therefore α fraction of the total rewards

issued by the Bitcoin network. This is reasonable since miners

share the pie in proportion to their investments. Not known

were whether there are other mining strategies more profitable

than honest mining.

Later, the authors of [15] developed a selfish mining strategy

that can earn higher rewards than honest mining. A selfish

miner does not broadcast its mined block immediately; it

carries out a block-withholding attack by secretly linking its

future mined blocks to the withheld mined block. If the selfish

miner can mine two successive blocks before other miners do,

it can broadcast its two blocks at the same time to override

the block mined by others. Since Bitcoin has an inherent

ar
X

iv
:1

91
1.

12
94

2v
3

 [
cs

.C
R

]
 6

 J
an

 2
02

1

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2

self-adjusting mechanism to ensure that on average only one

block is added to the blockchain every 10 minutes [16], by

invalidating the blocks of others (hence, removing them from

the blockchain), the selfish miner can increase its own profits.

For example, with computing power ratio α = 1/4, the

rewards obtained by selfish mining can be up to 1/3 fraction

of the total rewards [15]. Based on this observation, [17]

further proposed various selfish mining strategies with even

higher rewards. Despite the many versions of selfish mining,

the optimal (i.e., most-profitable) mining strategy remained

elusive until [18].

The authors of [18] formulated the mining problem as a

general Markov Decision Process (MDP) with a large state-

action space. The objective of the mining MDP, however, is not

a linear function of the rewards as in standard MDPs. Thus, the

mining MDP cannot be solved using a standard MDP solver.

To solve the problem, [18] first transformed the mining MDP

with the non-linear objective to a family of MDPs with linear

objectives, and then employed a standard MDP solver over the

family of MDPs to iteratively search for the optimal mining

strategy.

The approach in [18] is model-based in that various param-

eter values (e.g., α) must be known before the MDP can be

set up. In real blockchain networks, the exact parameter values

are not easy to obtain and may change over time, hindering the

practical adoption of the solution. In this paper, we propose

a model-free approach that solves the mining MDP using

machine learning tools. In particular, we solve the mining

MDP using reinforcement learning (RL) without the need to

know the parameter values in the mining MDP model.

RL is a machine-learning paradigm, where agents learn

successful strategies that yield the largest long-term reward

from trial-and-error interactions with their environment [19],

[20]. Q-learning is the most popular RL technique [21]. It

can learn a good policy by updating a state-action value

function without an operating model of the environment. RL

has been successfully applied in many challenging tasks, e,g.,

playing video games [22] and Go [23], and controlling robotic

movements [24].

The original RL algorithm cannot deal with the nonlinear

objective function of our mining problem. In this paper, we

put forth a new multi-dimensional RL algorithm to tackle

the problem. Experimental results indicate that our multi-

dimensional RL mining algorithm can successfully find the

optimal strategy. Importantly, it demonstrates robustness and

adaptability to a changing environment (i.e., parameter values

changing dynamically over time).

II. BLOCKCHAIN PRELIMINARIES

Blockchain is a decentralized append-only ledger for digital

assets. The data of blockchain is replicated and shared among

all participants. Its past recorded data are tamper-resistant and

participants can only append new data to the tail-end of the

chain of blocks. The state of blockchain is changed according

to transactions, and transactions are group into blocks that

are appended to the blockchain. The header of the block

encapsulates the hash of the preceding block, the hash of this

block, the Merkle root1 of all transactions contained in this

block, and a number called nonce that is generated by PoW.

Since each block must refer to its preceding block by placing

the hash of its preceding block in its header, all the blocks

form a chain of blocks arranged in chronological order. Fig.

1 illustrates the data structure of blockchain.

A. Proof of Work and Mining

In this paper, we focus on a Bitcoin-like blockchain that

adopts the PoW consensus protocol to validate new blocks

in a decentralized manner.2 In each round, the PoW protocol

selects a leader that is responsible for packing transactions

into a block and appends this block to the blockchain. To

prevent adversaries from monopolizing the blockchain, the

leader selection must be approximately random. Since Bitcoin-

like blockchain is permissionless and anonymity is inherently

designed as the goal, it must consider the Sybil attack where

an adversary simply creates many participants with different

identities to increase its probability of being selected as the

leader. To address the above issues, the key idea behind PoW

is that a participant will be randomly selected as the leader of

each round with a probability in proportion to its computing

power.

In particular, blockchain implements PoW using computa-

tional hash puzzles. To create a new block, the nonce placed

into the header of the block must be a solution to the hash

puzzle expressed by the following inequality

H (n, p,m) < D (1)

where the nonce n, the hash of the previous block p, the

Merkle root of all included transactions m are taken as the

input of a cryptographic hash function H(·) and the output

of the hash function should fall below a target D that is

small with respect to the whole range of the hash function

outputs. The used hash function (e.g., SHA-256 hash is used

for Bitcoin) satisfies the property of puzzle friendliness [26]: it

is challenging to guess the nonce to fulfill (1) by a one-shot try.

The only way to solve (1) is to try a large number of nonces

one by one to check if (1) is fulfilled until one lucky nonce

is found. Therefore, the probability of finding such a nonce

is proportional to the computing power of the participant—

the faster the hash function in (1) can be computed in each

trial, the more nounces can be tried per unit time. Using the

blockchain terminology, the process of computing hashes to

find a nonce is called mining, and the participants involved

are called miners.

B. Honest Mining Strategy

When a miner tries to append a new block to the latest legal

block by placing the hash of the latest block in the header

of the new block, we say that the miner mines on the latest

block. The blockchain is maintained by miners in the following

manner.

1The Merkle root of the transactions is the hash value of the Merkle tree
whose leaves are the transactions [25].

2There are also blockchains adopting other several consensus algorithms,
such as Proof of Stake (PoS), and Byzantine fault tolerance (BFT) [4].

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 3

Block Header

Block

Body

Current Block Hash

Previous Block Hash

Nonce

Merkle Root

Hash Hash

Tx Tx Tx Tx

Hash Hash Hash Hash

Next
Block

Previous
Block

Fig. 1: Data structure of blockchain.

To encourage all miners to mine on, and maintain, the

current blockchain, a reward is given as an incentive to the

miner by placing a coin-mint transaction in its mined block

that credits the miner with some new coins. If the block is

verified and accepted by other peers in the blockchain network,

the reward is effective and thus can be spent on the blockchain.

When a miner has found an eligible nonce, it publishes his

block to the whole blockchain network. Other miners will

verify the nonce and transactions contained in that block. If

the verification of the block is passed, other miners will mine

on the block (implicitly accepting the block); otherwise, other

miners discard the block and will continue to mine on the

previous legal block.

If two miners publish two different legal blocks that refer

to the same preceding block at the same time, the blockchain

is then forked into two branches. This is called forking of

blockchain. Forks in the blockchain because they are man-

ifestations of disagreement among peers on the blockchain

structure. It can also compromise the integrity and security of

the blockchain [27]. To resolve a fork, PoW prescribes that

only the rewards of the blocks on the longest branch (called

the main chain) are effective. Then, miners are incentivized to

mine on the longest branch, i.e., miners always add new blocks

after the last block on the longest main chain that is observed

from their local perspectives. If the forked branches are of

equal length, miners may mine subsequent blocks on either

branch randomly. This is referred to as the rule of the longest

chain extension. Eventually, one branch will predominate and

the other branches are discarded by peers in the blockchain

network.

The mining strategy adhering to the rule of the longest chain

extension and publishing a block immediately after the block

is mined is referred to as honest mining [3]–[5]. The miners

that comply with honest mining are called honest miners. It

was widely believed that the most profitable mining strategy

for miners is honest mining; and that when all miners adopt

honest mining, each miner is rewarded in proportion to its

computing power [3]–[5]. As a result, any rational miner will

not deviate from honest mining. This belief was later shown

to be ill-founded and that other mining strategies with higher

profits are possible [15], [17], [18]. We will briefly discuss

these mining strategies in the next section. For a more concrete

exposition, we will first present the mining model.

III. BLOCKCHAIN MINING MODEL

In this section, we present the Markov Decision Process

(MDP) model for blockchain mining. Ref. [15] first developed

an MDP mining model and used the model to construct

a selfish mining strategy with higher rewards than honest

mining. Then, [17] proposed even more profitable selfish

mining strategies. Recently, [18] extended the MDP mining

models of [15], [17] to a more general form. In this work, we

adopt the mining model of [18].

Without loss of generality, we assume the network is split

into two mining pools: one is an adversary that controls a

fraction α of the whole network’s computing power; the other

is the network of honest miners that controls a fraction 1−α
of the computing power of the whole network.

Even if the adversary and an honest miner release their

newly mined blocks to the network simultaneously, the blocks

will not be received by all miners simultaneously due to

propagation delays and network connectivity. We model the

communication capability of the adversary using the parameter

γ, defined as the fraction of the honest miners that will first

receive the block from the adversary when the adversary and

one honest miner release their blocks approximately at a same

time—more specifically, γ(1− α) is the computing power of

the honest network that will mine on the block of the adversary

when the adversary and an honest miner release their blocks

simultaneously.

As in [18], we model blockchain mining as a single-player

MDP M = 〈S,A, P,R〉, where S is the state space, A is the

action space, P is the transition probability matrix and R is

the reward matrix. Each transition is triggered by the event of

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 4

Blocks mined by the adversary

Blocks mined by the honest network

Blocks accepted by the whole network

1

2 3 4

2 3 4 5

 h
l

 a
l

Fig. 2: An illustrating example of the state in the adopted

MDP.

a miner mining a new block, whether the block is mined by

the adversary or one of the honest miners. The action taken

by the adversary based on the previous state, together with the

event, determines the next state to which the system evolves.

The objective of the adversary is to earn rewards higher

than its computational power. To achieve this, the adversary

will generally deviate from honest mining by building a

private chain of blocks without releasing them the moment

the blocks are mined; the adversary will release several blocks

from its private chain at a time to undo the honest chain

opportunistically.

State: Each state in the state space is represented by a

three-tuple form
(

l(a), l(h), fork
)

, where l(a) and l(h) are

respectively the lengths of the adversary’s chain and the

honest network’s chain after the latest fork (as illustrated

in Fig. 2). In general, fork can take three possible values

(irrelevant, relevant, active). Their meanings will be ex-

plained later.

Action: The action space A includes four actions that can

be executed by the adversary.

• Adopt: The adversary accepts the honest chain and mines

on the last block of the honest chain. This action discards

the l(a) blocks in the chain of the adversary and it renews

the attack from the new starting point without a fork. This

action is allowed by the MDP model for all l(a) and l(h).
• Override: The adversary publishes one block more than

the honest chain (i.e., l(h) + 1 blocks) to the whole

network. This action overrides the conflicting blocks of

the honest chain. This action is allowed when l(a) > l(h).
• Match: The adversary publishes the same number of

blocks as the honest chain (i.e., l(h) blocks) to the

whole network. This action creates a fork deliberately

and initiates an open mining competition between the two

branches of the adversary and the honest network. This

action is allowed when l(a) ≥ l(h) and fork = relevant.
• Wait: The adversary does not publish blocks and it just

keeps mining on its own chain. This action is always

feasible.

One remark about the actions of the MDP mining model

is that some actions that can generally be performed are

deliberately removed from the action-state space because these

actions are not gainful for the adversary. For example, when

l(a) < l(h), the adversary can still release a certain number

of its blocks. However, since releasing fewer blocks than the

number of blocks on the honest chain will not increase its

probability of mining the next block compared to mining it

privately, these actions thus are excluded from the allowed

actions.

We now explain the three values of the entry fork in the

three-tuple state.

• Relevant: The value of relevant means that the latest

block is mined by the honest network. Now, if fork =
relevant and l(a) ≥ l(h), the action match is allowed.

For example, if the previous state is
(

l(a), l(h) − 1, •
)

and

now the honest network successfully mines one block,

the state then changes to
(

l(a), l(h), relevant
)

. If at this

time, l(a) ≥ l(h), match is allowed. We remark that

match here may be gainful for the adversary because

γ(1− α) computing power of the honest network would

be dedicated to mining on the adversary chain because of

the near-simultaneous releases of the latest block of the

adversary chain and the latest block of the honest chain.

In this state, as far as the public is concerned, there no

fork yet, since the l(a) mined blocks of the adversary

are private and hidden from the public. However, if the

adversary execute a match from this state, then a fork will

be made known to the public and an active competition

between the two branches will follow.

• Irrelevant: The value of irrelevant means that the

latest block is mined by the adversary and the blocks

published by the honest network have been already re-

ceived by (the majority of) the honest network. Now,

even if l(a) ≥ l(h), the action match is not allowed. For

example, if the previous state is
(

l(a) − 1, l(h), •
)

and

now the adversary successfully mines a new block, the

state changes to
(

l(a), l(h), irrelevant
)

. We emphasize

that match is disallowed here even if l(a) ≥ l(h), not

because it cannot be performed in the blockchain, but

rather match here is not gainful for the adversary. If

match were to be performed here, no computing power

of the honest network would shift to mining on the

adversary chain because the miners in the honest network

would have received the latest block of the honest chain

first (well before the current transition triggered by the

adversary mining a new block) and would have dedicated

to mining on the honest chain already. Again, in this

state, there is no fork as far as the public blockchain

is concerned.

• Active: The value of active means that the adversary

has executed the action match from the previous state,

and the blockchain is now split into two branches. For

example, if the previous state is
(

l(a), l(h), relevant
)

with l(a) ≥ l(h) and the adversary executed the action

match. If the new transition is triggered by the honest

network mining a new block, then the state transitions to
(

l(a) − l(h), 1, active
)

. In short, active means a fork is

made known to the public and that an active competition

between the two branches of the fork is ongoing.

Transition and Reward: After the execution of an action,

the occurrence of each state transition is triggered by the

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 5

creation of a new block (either by the adversary or by the

honest network) and the corresponding transition probability

is the probability of the block created by the adversary

(α) or by the honest network (1 − α). The initial state

is (1, 0, irrelevant) with probability α or (0, 1, irrelevant)
with probability 1 − α. Different actions performed by the

adversary will have different effects on the state transitions.

The specific description is as follows:

• The state transitions after the execution of action adopt:
By executing the adopt action, the adversary accepts all

the blocks on the branch mined by the honest network

and mines on the latest block on the honest chain together

with the honest network. An illustrating example of the

state transitions after the execution of action adopt is

given in Fig. 3. As shown in Fig. 3, with the probability

of α, the adversary can successfully mine the next block

and then the state transits to (1, 0, relevant); with the

probability of 1 − α, the honest network can success-

fully mine the next block and then the state transits to

(0, 1, relevant).

1

2 3

2

1

2 3

2 4

1

2 3 4

2

Probability

Probability

Blocks mined by the adversary (private)

Blocks mined by the honest network (discarded)

Blocks mined by the honest network

Blocks accepted by the whole network



1 
State:     , ,

a h
l l 

 1, 0, irrelevant

 0,1, irrelevant

State:

State:

 h
l

 a
l

adopt

Fig. 3: An illustrating example of the state transitions after the

execution of action adopt.

• The state transition after the execution of action

override: The adversary can only perform action

override when the number of the blocks on its private

branch is greater than the number of the blocks on the

honest branch (i.e., when l(a) > l(h)). By performing

override, the adversary publishes l(h) + 1 blocks from

its private branch to overwrite the latest l(h) blocks

on the honest branch. After that, the branch of the

adversary becomes the main chain and the whole network

mines on the latest block of the adversary’s branch.

An illustrating example of the state transitions after the

execution of action override is given in Fig. 4. As

shown in Fig. 4, the adversary has the probability of

α to successfully mine the next block and makes the

state transit to
(

l(a) − l(h), 0, irrelevant
)

; the honest

network has the probability of 1 − α to successfully

mine the next block and makes the state transit to
(

l(a) − l(h) − 1, 1, relevant
)

.

• The state transition after the execution of action match:

The match action can only be executed when fork =
relevant and when the number of blocks on the private

branch of the adversary is greater than or equal to the

number of blocks on the public branch of the honest

Probability

Probability

Blocks mined by the adversary (private)

Blocks mined by the honest network (discarded)

Blocks mined by the honest network

Blocks accepted by the whole network



1 State:     , ,
a h

l l 

State:

State:

1

2 3

2 3 4

1

2 3

2 3 4 5

1

2 3 5

2 3 4

 h
l

 a
l

    1,1,
a h

l l relevant 

   a h
l l

1

    1 0
a h

l l  

    , 0,
a h

l l irrelevant

override

Fig. 4: An illustrating example of the state transitions after the

execution of action override.

network (i.e., when l(a) ≥ l(h)). After the adversary

performs the match action, a fork will be formed on the

blockchain that is observed by all the miners. After that,

the adversary is still mining on its own branch; however,

due to the fork, a γ fraction of the honest network

will mine on the branch published by the adversary,

and the other 1 − γ fraction of the honest network will

mine on the branch published by the honest network.

An illustrating example of the state transitions after

the execution of action match is given in Fig. 5. As

shown in Fig. 5, the next block may be published by

the adversary on its own branch such that the state

transits to
(

l(a) + 1, l(h), active
)

with the probability

of α; the next block may be published by the honest

network on the branch of the adversary such that the state

transits to
(

l(a) − l(h), 1, relevant
)

with the probability

of γ (1− α); the next block may be published by the

honest network on the branch of the honest network such

that the state transits to
(

l(a), l(h) + 1, relevant
)

with

the probability of (1− γ) (1− α). We must emphasize

that after the execution of action match, among the

l(a) blocks of the adversary, some of the blocks may

be private while other blocks are public. Which parts

of blocks are private/public are implied by the state

implicitly. For example, suppose that the previous state is
(

l(a), l(h), relevant
)

with l(a) > l(h) (as illustrated in the

left part of Fig. 5) and the action match is performed. If

the adversary subsequently mines a new block on its own

branch, then the state changes to
(

l(a) + 1, l(h), active
)

,

where there are l(a)+1−l(h) private blocks and l(h) public

blocks among the l(a)+1 blocks owned by the adversary

(as illustrated by the first case in the right part of Fig. 5).

If the honest miners mine a new block on the adversary’s

branch, the state changes to
(

l(a) − l(h), 1, relevant
)

,

where there are l(a) − l(h) private block left for the

adversary (as illustrated by the second case in the right

part of Fig. 5). If the hones miners mine a new block

on the honest network’s branch, the state changes to

l(a) − l(h), where there are l(a) − l(h) private blocks and

l(h) public blocks among the l(a) blocks owned by the

adversary (as illustrated by the third case in the right part

of Fig. 5).

• The state transition triggered by action wait: The wait
action means that the adversary does not perform any

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 6

Blocks mined by the adversary (private)

Blocks mined by honest network (public)

Blocks mined by honest network

Blocks mined by honest network (discarded)

1

2 3

2 3 4

1

2 3 4

2 3 4

1

2 3 4

2 3 4

Probability
1

2 3

2 3 4 5

Probability

Probability

Blocks accepted by the whole network

State:

State:

State:

State:

Fig. 5: An illustrating example of the state transitions after the

execution of action match.

actions and continues to mine on its private branch.

After the action wait is executed, if fork 6= active,

the adversary and the honest network mine on their

own branches respectively. An illustrating example of

the state transitions after the execution of action match
when fork 6= active is given in Fig. 6. As shown in

Fig. 6, when fork 6= active, the next new block may

be mined by the adversary on its own private branch

such that the state changes to
(

l(a) + 1, l(h), irrelevant
)

with the probability of α; or the next new block may

be mined by the honest network on the public branch

such that the state changes to
(

l(a), l(h) + 1, relevant
)

with the probability of 1 − α. After the action wait is

executed, if fork = active, due to the fork that can be

observed by the whole network, the mining behaviors of

all miners are the same as that after the execution of

the match action. An illustrating example of the state

transitions after the execution of action match when

fork = active is given in Fig. 7. As shown in Fig.

7, when fork = active, the next new block may be

mined by the adversary on its own branch such that the

state changes to
(

l(a) + 1, l(h), active
)

with probability

α; or the next new block may be mined by the honest

network on the branch of the adversary such that the

state changes to
(

l(a) − l(h), 1, relevant
)

with probabil-

ity γ (1− α); or the next new block may be mined by

the honest network on the branch of the adversary such

that the state changes to
(

l(a), l(h) + 1, relevant
)

with

probability (1− γ) (1− α).

The reward is given as a tuple
(

r(a), r(h)
)

, where r(a)

denotes the number of blocks mined by the adversary and

accepted by the whole network, and r(h) denotes the number

of blocks mined by the honest network and accepted by the

whole network. The state transitions and reward matrices are

given in TABLE I.

State:

State:

State:

1

2 3

2 3

1

2 3

2 3 4

1

2 3 5

2 3

 h
l

 a
l

Probability

Probability



1 

 h
l

  1
a

l 
    1, ,
a h

l l irrelevant

  1
h

l 

 a
l

    , 1,
a h

l l relevant

Blocks mined by the adversary (private) Blocks mined by the honest network

Blocks accepted by the whole network

wait

    , , /
a h

l l relevant irrelevant

Fig. 6: An illustrating example of the state transitions after the

execution of action wait when fork 6= active.

State:

1

2 3

2 3

1

2 3 4

2 3

1

2 3 4

2 3

1

2 3

2 3 4

Probability

State:

State:

State:

Probability

Probability

Blocks mined by honest network (public) Blocks mined by honest network

Blocks mined by honest network (discarded)Blocks accepted by the whole network

Fig. 7: An illustrating example of the state transitions after the

execution of action wait when fork = active.

Objective Function: The objective of the adversary is to

find the optimal mining strategy that can earn as much reward

as possible. Since blockchain keeps adjusting the mining

difficulty (i.e., the mining target on the RHS of inequality (1))

to ensure that on average one valid block is introduced to the

overall blockchain per valid block interval (e.g., one block per

10 minutes for Bitcoin, and per 10-20 seconds for Ethereum),

the mining objective of the adversary is not to maximize its

absolute cumulative reward, but to maximize the ratio of its

cumulative rewards over the cumulative rewards of the whole

network (i.e., the cumulative rewards of the whole network

advance by one reward per block interval—rewards of all

miners/Time is fixed to 1 per block interval; then maximizing

adversary rewards/Time is equivalent to maximizing the ratio

of adversary rewards/Time to rewards of all miners/Time

= adversary rewards/rewards of all miners). We emphasize

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 7

TABLE I: The state transitions and reward matrices of the MDP mining model.

Current State, Action Next State Transition Probability Reward
(

l(a), l(h), •
)

, adopt
(1, 0, irrelevant) α (

0, l(h)
)

(0, 1, irrelevant) 1− α
(

l(a), l(h), •
)

, override

(

l(a) − l(h), 0, irrelevant
)

α (

l(h) + 1, 0
)

(

l(a) − l(h) − 1, 1, relevant
)

1− α
(

l(a), l(h), irrelevant
)

, wait
(

l(a) + 1, l(h), irrelevant
)

α (0, 0)
(

l(a), l(h), relevant
)

, wait
(

l(a), l(h) + 1, relevant
)

1− α (0, 0)
(

l(a), l(h), active
)

, wait
(

l(a) + 1, l(h), active
)

α (0, 0)
(

l(a), l(h), relevant
)

,match
(

l(a) − l(h), 1, relevant
)

γ (1− α)
(

l(h), 0
)

(

l(a), l(h) + 1, relevant
)

(1− γ) (1− α) (0, 0)

The action override is allowed when l(a) > l(h); the action match is allowed when l(a) ≥ l(h).

that blocks mined by the adversary and the honest network

that are discarded due to losing out in the competition are

not considered as having been successfully introduced to the

blockchain. Thus, the principle behind the strategy of the

adversary is to maximize the number of blocks mined by the

honest network that are later discarded while reducing its own

discarded blocks.

As in [18], we define the following relative mining gain
(RMG) as the objective function for blockchain mining:

RMG = E

[

lim
T→∞

∑t+T−1
τ=t r

(a)
τ+1

∑t+T−1
τ=t r

(a)
τ+1 +

∑t+T−1
τ=t r

(h)
τ+1

]

(2)

where
(

r
(a)
t , r

(h)
t

)

is the tuple of rewards issued in the block

interval t, T is the size of the observing window. The objective

of the adversary is to maximize this relative mining gain.

Under the above MDP mining model, we can now interpret

honest mining, selfish mining [15], lead stubborn mining [17]

as examples of different mining strategies.

Honest Mining: For honest mining, miners will follow

the rule of the longest chain extension. Thus, they will not

maintain a private chain: when they have a new block, they

will immediately publish it. The honest mining strategy can

be written as

HM
(

l(a), l(h), •
)

=







adopt
wait

l(a) < l(h)

l(a) = l(h)

override l(a) > l(h)
(3)

where we note that l(a), l(h) can only take a value of 0 or 1.

Selfish Mining: The main idea of selfish mining [15] is

described as follows. If one block is found by the adversary,

it does not publish it immediately and it keeps mining on

its private chain. When the adversary already has one private

block and then honest network publishes one block (immedi-

ately after an honest miner mines a new block), the adversary

chooses to publish its block to match the honest network. This

causes γ(1 − α) computing power of the honest network to

mine on the adversary’s chain. When the adversary already has

some private blocks and then honest network catches up with

only one block less than the adversary (l(h) = l(a)−1 ≥ 1), the

adversary overrides the honest network’s block by publishing

all its blocks. The selfish mining strategy can be written as

SM
(

l(a), l(h), •
)

=















adopt
match
override

l(a) < l(h)

l(a) = l(h) = 1
l(h) = l(a) − 1 ≥ 1

wait otherwise
(4)

Lead Stubborn Mining: Lead stubborn mining [17] is

different from selfish mining in the following way. A lead

stubborn miner always publishes one block from its private

chain to match with the honest network when the honest

network mines a new block if l(a) ≥ l(h). The adversary never

executes the action override. The lead stubborn mining can be

written as

LSM
(

l(a), l(h), fork
)

=







adopt
match

l(a) < l(h), ∀fork
otherwise

wait l(a) > l(h), fork = irrelevant

(5)

It is shown that this lead stubborn mining can achieve higher

profits than selfish mining [17].

Optimal Mining: Although there are many possible mining

strategies that can obtain profits higher than honest mining,

the optimal mining strategy is not obvious. Since the state-

action space of the MDP is huge, it is not straightforward

to derive the optimal mining strategy. The relative mining

gain objective (2) is a nonlinear function of the rewards,

and thus the corresponding MDP cannot be solved using

standard MDP solvers to give the optimal mining strategy. To

solve this problem, [18] first transformed the MDP with the

nonlinear objective to a family of MDPs with linear objectives,

and then employed a standard MDP solver combined with a

numerical search over the family of MDPs to find the optimal

mining strategy. As shown in [18], its solution indeed can

find the optimal mining strategy. However, the solution of

[18] is model-based approach: it must know the parameters

that characterize the MDP model exactly (i.e., the computing

power distribution α, the communication capability γ). In real

blockchain networks, these parameters are not easy to obtain

and may change over time, hindering the use of the solution

proposed in [18]. We propose a model-free approach that

solves the MDP with the nonlinear objective using RL.

IV. MINING THROUGH RL

This section first provides preliminaries for RL and then

presents a new RL algorithm that can derive the optimal

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 8

mining strategy without knowing the parameters of the en-

vironment. We propose the new RL mining algorithm based

on Q-learning, one popular algorithm from the RL family.

A. Preliminaries for Original Reinforcement Learning Algo-

rithm

In RL, an agent interacts with an environment in a sequence

of discrete time steps, t = 0, 1, 2, ..., as shown in Fig. 8.

At time t, the agent observes the state of the environment,

st; it then takes an action, at. As a result of the state-action

pair, (st, at), the agent receives a scalar reward rt+1, and the

environment moves to a new state st+1 at time t + 1. Based

on st+1, the agent then decides the next action at+1. The

goal of the agent is to effect a series of rewards {rt}t=1,2,...

through its actions to maximize some performance criterion.

For example, for Q-learning [21], the performance criterion to

be maximized at time t is the discounted accumulated rewards

going forward Rt =
∑

∞

τ=t λ
τ−trτ+1, where λ ∈ (0, 1) is a

discount factor for weighting future rewards [19]. In general,

the agent takes actions according to some decision policy π.

RL methods specify how the agent changes its policy as a

result of its experiences. With sufficient experiences, the agent

can learn an optimal decision policy π∗ to maximize the long-

term accumulated reward [19].

The desirability of state-action pair (st, at) under a decision

policy decision π is captured by a Q function, defined as

Q (s, a) = [Rt |st = s, at = a, π], i.e., the expected dis-

counted accumulated reward going forward given the current

state-action pair (st, at). The optimal decision policy π∗ is

one that maximizes Q function. In Q-learning, the goal of

the agent is to learn the optimal policy π∗ through an online-

iterative process by observing the rewards while it takes action

in successive time steps. In particular, the agent maintains the

Q function, Q(s, a), for all state-action pairs (s, a), in a tabular

form.

Let q (s, a) be the estimated action-value function during

the iterative process. At time step t, given state st, the agent

selects a greedy action at = argmaxaq(st, a) based on its

current Q function. This will cause the system to return a

reward rt+1 and move to state st+1. The experience at time

step t is captured by the quadruplet et = (st, at, rt+1, st+1).
At the end of time step t, experience et is used to update

q(st, at) for entry (st, at) as follows:

q (st, at)← (1− β) q (st, at) + β
[

rt+1 + λmax
a′

q (st+1, a
′)
]

(6)

where β ∈ (0, 1] is a parameter that governs the learning

rate. Q-learning learns from experiences gathered over time,

{et}t=0,1,..., through the iterative process in (6). Note that Q-

learning is a model-free learning framework in that it tries to

learn the optimal policy without having a model that describes

the operating behavior of the environment beyond what can

be observed through the experiences.

As a deviation from the above description, a caveat in

Q-learning is that the so-called ε-greedy algorithm is often

adopted in action selection. For the ε-greedy algorithm, the

action at = argmaxaq(st, a) is only chosen with probability

Environment

Agent

action

reward

state

t
a

t
r

t
s

1t
r 

1t
s 

Fig. 8: The agent-environment interaction process of RL

algorithm.

1−ε. With probability ε, a random action is chosen uniformly

from the set of possible actions. This is to avoid the algorithm

from zooming in to a local optimal policy and to allow the

agent to explore a wider spectrum of different actions in search

of the optimal policy [19].

It has been shown that in a stationary environment that can

be fully captured by an MDP, the Q-values will converge to

optimality if the learning rate decays appropriately and each

action in the state-action pair (s, a) is executed an infinite

number of times in the process [19].

B. New Reinforcement Learning Algorithm for Mining

The original RL algorithm as presented in Section IV.A

cannot be directly applied to maximize the mining objective

function expressed in (2); there is one fundamental obstacle

that must be overcome. The obstacle is the nonlinear combi-

nation of the rewards in the objective function. The original

RL algorithm can only maximize an objective that is a linear

function of the scalar rewards, e.g., the weighted sum of scalar

rewards. To address this issue, we put forth a new algorithm

that aims to optimize the original mining objective: the multi-

dimensional RL algorithm.

We formulate the multi-dimensional RL algorithm as fol-

lows. At mined block interval 3 t (t = 0, 1, 2, · · ·), the state

st ∈ S takes a value from the state space S as defined

in the MDP model of blockchain mining, and the action

at ∈ A is chosen from the action space A. The state

transition occurs according to TABLE I. The reward is the pair
(

r
(a)
t+1, r

(h)
t+1

)

whose value is assigned according to TABLE I.

The experience at the end of mined block interval t is given

by et =
(

st, at, st+1, r
(a)
t+1, r

(h)
t+1

)

. The objective of the multi-

3A mined block interval is different from a valid block interval. A valid
block interval separates two valid blocks that are ultimately adopted by the
blockchain. The average duration of a valid block interval is a constant in
many blockchain systems (e.g., 10 min in bitcoin). The average duration of
the valid block interval is defined by the system designer and its constancy is
maintained by adjusting the mining target. A mined block interval separated
two mined (by either the adversary of the honest network), regardless of
whether the blocks becomes valid later. In the MDP model, each transition is
triggered by the mining of a new block. Thus the average duration of a mined
block interval is the average time separates two adjacent transitions. Due to
the actions of the adversary, some of the mined blocks (by the adversary of
the honest network) may be discarded later.

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 9

dimensional RL algorithm is to maximize the relative mining

gain as expressed in (2).

For a state-action pair (st, at), instead of maintaining an

action-value scalar Q(s, a), the multi-dimensional RL algo-

rithm maintains an action-value pair
(

Q(a)(s, a), Q(h)(s, a)
)

corresponding to the Q function values of the adversary and

the honest network, respectively. The Q functions defined by

Q learning are the expected cumulative discounted rewards.

Specifically, Q(a)(s, a) and Q(h)(s, a) are defined as

Q(a)(s, a) = E

[

lim
T→∞

∑T

τ=t
λτ−tr

(a)
τ+1 |st = s, at = a, π

]

Q(h)(s, a) = E

[

lim
T→∞

∑T

τ=t
λτ−tr

(h)
τ+1 | st = s, at = a, π

]

(7)

Suppose that at mined block interval t, the Q functions in (7)

are estimated to be q(a)(s, a), q(h)(s, a). For action selection,

we still adopt the ε-greedy approach. To select the greedy

action, we construct the following objective function:

f (s, a) =
q(a)(s, a)

q(a)(s, a) + q(h)(s, a)
(8)

After taking action at, the state transitions to st+1 and the

reward pair
(

r
(a)
t+1, r

(h)
t+1

)

is issued. With the experience et =
(

st, at, st+1, r
(a)
t+1, r

(h)
t+1

)

, the multi-dimensional RL algorithm

updates the two Q functions as follows:

q(a)(st, at)

← (1− β) q(a)(st, at) + β
[

r
(a)
t+1 + λq(a) (st+1, a

′)
]

q(h)(st, at)

← (1− β) q(h)(st, at) + β
[

r
(h)
t+1 + λq(h) (st+1, a

′)
]

(9)

where a′ = argmaxaf (st+1, a). Note that the update rule of

(9) is very similar to the update rule of Q learning, except that

the greedy action a′ is chosen by maximizing the constructed

objective function in (8) rather than maximizing the Q function

itself as in Q learning. From the expressions in (7) and (8),

we can verify that the adopted objective function in (8) is

consistent with the relative mining gain objective function

defined in (2), except the discount terms λτ−t used in the

computation of the Q functions. The use of discount terms can

ensure that the Q functions can converge to some bounded

values; however, adding discount terms to the rewards will

change the original mining objective. One simple way to

ensure strict objective consistency is to set λ = 1. Although

the setting of λ = 1 will result in unbound values for the Q

functions as the RL iteration gradually progresses to infinite

time steps, this is not a big problem as long as the Q function

values do not overflow during the execution of the algorithm.

In practice, we can also set λ to be very close to one.

The RL algorithm expressed by the Q function updates in

(9) is our multi-dimensional RL algorithm. We introduce one

additional technical element to the ε-greedy action selection,

as explained in the next paragraph.

As described above, when we select the action, we adopt

the ε-greedy strategy that allows us to select the current best

action (at = argmaxaf (st, a)) with probability 1 − ε and

to randomly select an action with probability ε. This random

action selection is used to explore some unseen states and

can avoid trapping at local optimal maximums. However, the

tuning of parameter ε is not straightforward. A large ε reduces

the possibility of trapping at local optimal maximums but it

also decrease the average reward, since it wastes a fraction

of the time to explore non-optimal states. In our algorithm,

we adopt the following strategy for dynamically tuning the

parameter ε. Denote the number of times state was visited by

V (st). Then, the ε parameter used at state st for performing

ε-greedy action selection is given by

ε (st) = exp

(

−
V (st)

Tε

)

(10)

where Tε is a temperature parameter that governs how fast

we gradually reduce the ε parameter. The pseudo-code of

our multi-dimensional RL algorithm for blockchain mining is

given in Algorithm 1.

Algorithm 1 Multi-dimensional RL Algorithm for Blockchain

Mining

Initialize q(a) (s, a) = 0, ∀s, ∀a;

Initialize q(h) (s, a) = 0, ∀s, ∀a;

Initialize V (s) = 0, ∀s;

Initialize Tε, λ, β;

for t = 0, 1, 2, · · · do

Receive st, rt from the blockchain environment;

Generate action at = SELECTACTION(st);
Input at to the blockchain environment;

Observe st+1, r
(a)
t+1, r

(h)
t+1 from the blockchain environ-

ment;

Compute a′ = argmax
a

q(a)(st+1,a)

q(a)(st+1,a)+q(h)(st+1,a)

Update

q(a)(st, at)

← (1− β) q(a)(st, at) + β
[

r
(a)
t+1 + λq(a) (st+1, a

′)
]

;

q(h)(st, at)

← (1− β) q(h)(st, at) + β
[

r
(h)
t+1 + λq(h) (st+1, a

′)
]

;

end for

procedure SELECTACTION(st)

Compute ε (st) = exp
(

−V (st)
Tε

)

;

if random < ε (st) then

randomly select an action at from A;

else

at = argmax
a∈A

q(a)(st,a)
q(a)(st,a)+q(h)(st,a)

;

end ifreturn at
end procedure

V. PERFORMANCE EVALUATIONS

We have conducted simulations to investigate our proposed

RL mining strategy. Following the simulation approach used

in [15], we constructed a Bitcoin-like simulator that captures

all the relevant PoW network details described in previous

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
in

in
g

 r
e

w
a

rd

 = 1

RL mining

honest mining

selfish mining

/(1-)

optimal policy

Fig. 9: Achieved mining gain versus α for γ = 1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
in

in
g

 r
e

w
a

rd

 = 0.5

RL mining

honest mining

selfish mining

/(1-)

optimal policy

Fig. 10: Achieved mining gain versus α for γ = 0.5.

sections, except that the crypto puzzle solving processing was

replaced by a Monte Carlo simulator that simulates the time

required for block discovery without actually attempting to

compute a hash function. We simulated 1000 miners mining

at identical rates (i.e., they each can have one simulated hash

test at each time step of the Monte Carlo simulation). A subset

of the 1000 miners (1000α miners) forms an adversary pool

running a malicious mining strategy that co-exists with honest

mining adopted by the other 1000(1 − α) miners. When co-

existing with honest mining, the malicious mining strategy

is one of the following mining strategies: i) our RL mining

strategy, ii) the optimal mining strategy derived in [18] or iii)

the selfish mining strategy derived in [15]. Upon encountering

two subchains of the same length, we divide the honest

miners such that a fraction γ of them mine on the attacking

pool’s branch while the rest mine on the other branch. The

performance metric used is the relative mining gain (RMG)

computed over a window consisting of Tw = 105 time

steps:
∑t+Tw−1

τ=t r
(a)
τ+1

/(

∑t+Tw−1
τ=t r

(a)
τ+1 +

∑t+Tw−1
τ=t r

(h)
τ+1

)

.

The hyper-parameters used in the RL algorithm are set to as

λ = 0.999, β = 0.05.

We first compare the performances of our RL mining, the

optimal-policy mining, and the selfish mining. Fig. 9-11 plots

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
in

in
g

 r
e

w
a

rd

 = 0

RL mining

honest mining

selfish mining

/(1-)

optimal policy

Fig. 11: Achieved mining gain versus α for γ = 0.

the mining reward of the adversary versus α for different

values of γ and γ ∈ {0, 0.5, 1}. Note that the value of γ
ranges in the interval [0, 1]. Therefore, γ = 0, γ = 0.5, γ = 1
respectively means a low, a median, and a high communication

capability for the adversary. We just take these three values

for γ to demonstrate that the adversary with our RL mining

can dynamically adapt to the optimal mining when it has

different communication capability. The relative mining gain

of α/(1− α) is treated as a bound for the mining problem

and it can only be achieved by optimal-policy mining for

γ = 1. To derive the optimal policy, we adopt the search

algorithm proposed in [18] and set the search error to a very

tiny number of 10−5. As in [18], we truncate the MDP at

l(a) = 100 or l(a) = 100 for both of optimal-policy mining

and RL mining. The temperature parameter Tε is set to as

Tε = 104 and it is reset to Tε = 0 after t = 108 time steps

when convergence is attained. All the results of RL mining are

given after the algorithm has converged. From the results, we

can see that the performance of our RL mining can converge

to the performance of optimal-policy mining without knowing

the details about the environment model.

We next consider the impact of the temperature parameter

Tε on the convergence of RL mining. Fig. 12-14 present

the mining rewards obtained by RL mining with different

Tε over time for γ ∈ {0, 0.5, 1}, respectively (α is fixed

to 0.45). In fact, the parameter of Tǫ determines the extent

of the exploration performed by the RL algorithm in its

learning process. A larger Tǫ encourages more explorations,

and eventually, the learning process can converge, although a

larger Tǫ needs more time to converge. The optimal value of

Tǫ can lead to the convergence of RL by enough explorations

and does not waste learning time by having unnecessary

explorations. How to tune to the optimal Tǫ is an interesting

research direction. In this work, we just investigate the impact

of Tǫ on our RL mining by simulations. From the simulation

results in Fig. 12-14, we can see that generally, RL mining

with larger Tε can have more explorations and can converge

more closely to the optimal performance; however, RL mining

with larger Tε also have longer exploration phases that slow

down the convergence process. Fig. 15 presents the mining

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 11

0 1 2 3 4 5 6 7 8 9 10

t 106

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
in

in
g

 r
e

w
a

rd

 = 1, = 0.45

T =10
1

T =10
2

T =10
3

T =10
4

Fig. 12: Achieved mining gain versus time step for different

Tε and γ = 1, α = 0.45.

0 1 2 3 4 5 6 7 8 9 10

t 106

0.3

0.4

0.5

0.6

m
in

in
g

 r
e

w
a

rd

 = 0.5, = 0.45

T =10
1

T =10
2

T =10
3

T =10
4

Fig. 13: Achieved mining gain versus time step for different

Tε and γ = 0.5, α = 0.45.

rewards of RL mining with different Tε for different α (γ is

fixed to 1). The mining reward results are given after t = 107

time steps and without resetting Tε = 0. We see that for

larger α, we need larger Tε to ensure the convergence of RL

mining, although it will slow down the convergence process.

In practice, we can dynamically reduce the value of Tε when

we find that the mining gain has already converged.

Last, we investigate the mining performances of dif-

ferent mining strategies when the blockchain environment

changes. The experimental results are given in Fig. 16-18.

The blockchain environment starts with parameter values of

(α = 0.35, γ= 1) and the values of (α, γ) change sequentially

in the experiment. The temperature parameter Tε of RL mining

is fixed to Tε = 103. The optimal-policy mining strategy

adopts the optimal policy for the blockchain environment

with (α = 0.35, γ= 1). We derived the optimal policy for

(α = 0.35, γ= 1) by iteratively exploit the MDP solver [28]

to search over the policy space, as proposed in [18]. TABLE

II describes the found optimal policy for (α = 0.35, γ= 1)
when l(a) ≤ 8 and l(h) ≤ 8. The performances of the

optimal policy for (α = 0.35, γ= 1), and the selfish mining

0 1 2 3 4 5 6 7 8 9 10

t 106

0.3

0.4

0.5

m
in

in
g

 r
e

w
a

rd

 = 0, = 0.45

T =10
1

T =10
2

T =10
3

T =10
4

Fig. 14: Achieved mining gain versus time step for different

Tε and γ = 0, α = 0.45.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
in

in
g
 r

e
w

a
rd

 =1, t=10e7

RL Mining, T =10

RL Mining, T =10
2

RL Mining, T =10
3

RL Mining, T =10
4

Selfish Mining

Honest Mining

Upper bound and optimal policy

Fig. 15: Achieved mining gain versus the α for γ = 1 and

different Tε.

are treated as benchmarks for our RL mining in the changing

blockchain environment. In Fig. 16-18, for different values

of the parameters (α, γ), the performances of optimal selfish

mining are still obtained using the policy of the optimal selfish

mining under model parameters (α, γ) = (0.35, 1). From the

simulation results, we can see that when the environment

has changed, the optimal-policy mining strategy derived from

the MDP model is not optimal anymore; our RL mining can

adaptively learn the optimal policy for different environments.

This demonstrates the advantage of RL mining over these

model-based mining strategies.

VI. CONCLUSION

We employed RL algorithms to solve the mining MDP

problem of Bitcoin-like blockchains. We showed that, without

knowing parameters about the blockchain network model, our

RL mining can achieve the mining reward of the optimal

policy that requires knowledge of the parameters. Therefore,

in a dynamic environment in which the parameter values can

change over time, RL mining can be more robust.

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 12

TABLE II: The optimal policy for the blockchain environment

with (α = 0.35, γ= 1) when l(a) ≤ 8 and l(h) ≤ 8.

l(a)l(h) 1 2 3 4 5 6 7 8

1 *** *a* *** *** *** *** *** ***
2 w** *m* *w* *a* *** *** *** ***
3 w** *oo w** *w* *a* *** *** ***
4 w** *m* oo* w** *w* *a* *** ***
5 w** *mw *m* oo* w** *w* *w* *a*
6 w** *mw *mw *m* oo* w** ww* *w*
7 w** *mw *mw *mw *m* oo* w** ww*
8 w** *mw *mw *mw *mw *m* oo* w**

0 1 2

t 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
in

in
g

 r
e

w
a

rd

 (,) = (0.35,1) (,) = (0.35,0.5) (,) = (0.35,0)

RL mining

selfish mining

optimal policy for (,) = (0.35,1)

Fig. 16: Achieved mining gain when the environment is

changing and the values of (α, γ) change in the following

order: (0.35,1), (0.35, 0.5), and (0.35,0).

Going forward, we will investigate two issues that need to

be addressed before RL mining can be practical:

1. More complete MDP model as proposed in [29]

for blockchain networks—This model incorporates detailed

blockchain features, such as stale block rate, double spending

attack, and eclipsed attack, that have been precluded by the

model in the current paper. The large action-space of the

complete model will make it more challenging for RL mining

to learn an optimal strategy.

2. Cost of lagged time in convergence—Since miners need

to pay for their hardware and consume electricity to mine

blocks, fast convergence of the mining algorithm is important

from the economical standpoint. Deep RL [22] that incorpo-

rates deep neural networks into RL can potentially speed up

the convergence rate. We will consider the exploit of deep RL

in our future work.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” [Online].

Available: http://bitcoin.org, 2008.

[2] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-

rencies. O’Reilly Media, Inc., 2014.

[3] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-

veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[4] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” IEEE Access, vol. 7, pp. 22 328
– 22 370, 2019.

0 1 2

t 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
in

in
g

 r
e

w
a

rd

 (,) = (0.35,1) (,) = (0.35,0) (,) = (0.35,0.5)

RL mining

selfish mining

optimal policy for (,) = (0.35,1)

Fig. 17: Achieved mining gain when the environment is

changing and the values of (α, γ) change in the following

order: (0.35,1), (0.35, 0), and (0.35,0.5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
in

in
g

 r
e

w
a

rd
 (,) = (0.35,1) (,) = (0.35,0) (,) = (0.15,0)

RL mining

selfish mining

optimal policy for (,) = (0.35,1)

Fig. 18: Achieved mining gain when the environment is

changing and the values of (α, γ) change in the following

order: (0.35,1), (0.35, 0), and (0.15,0).

[5] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das,
“Everything you wanted to know about the blockchain: Its promise,
components, processes, and problems,” IEEE Consumer Electronics

Magazine, vol. 7, no. 4, pp. 6–14, 2018.

[6] K. Fanning and D. P. Centers, “Blockchain and its coming impact on
financial services,” Journal of Corporate Accounting & Finance, vol. 27,
no. 5, pp. 53–57, 2016.

[7] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and
H. Janicke, “Blockchain technologies for the internet of things: Research
issues and challenges,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 2188–2204, 2018.

[8] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
2019.

[9] S. A. Abeyratne and R. P. Monfared, “Blockchain ready manufacturing
supply chain using distributed ledger,” 2016.

[10] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual International Cryptology Conference. Springer, 1992,
pp. 139–147.

[11] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 2015,
pp. 281–310.

[12] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the

THIS WORK WAS ACCEPTED FOR PUBLICATION IN INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 13

Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.

[13] C. Lee, “Litecoin-open source p2p digital currency,” [Online]. Available:

https://litecoin.com/en/, 2011.
[14] V. Buterin, “Ethereum: A next-generation smart contract

and decentralized application platform,” [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper, 2014.
[15] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable,” Communications of the ACM, vol. 61, no. 7, pp. 95–102,
2018.

[16] D. Kraft, “Difficulty control for blockchain-based consensus systems,”
Peer-to-Peer Networking and Applications, vol. 9, no. 2, pp. 397–413,
2016.

[17] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in 2016

IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 305–320.

[18] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in International Conference on Financial Cryp-

tography and Data Security. Springer, 2016, pp. 515–532.
[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.
[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement

learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[21] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[23] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine

learning, 2015, pp. 1889–1897.
[25] R. C. Merkle, “A digital signature based on a conventional encryption

function,” in Conference on the theory and application of cryptographic

techniques. Springer, 1987, pp. 369–378.
[26] M. Wang, M. Duan, and J. Zhu, “Research on the security criteria of hash

functions in the blockchain,” in Proceedings of the 2nd ACM Workshop

on Blockchains, Cryptocurrencies, and Contracts. ACM, 2018, pp.
47–55.

[27] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Decon-
structing the blockchain to approach physical limits,” arXiv preprint

arXiv:1810.08092, 2018.
[28] I. Chadès, G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin,

“Mdptoolbox: a multi-platform toolbox to solve stochastic dynamic
programming problems,” Ecography, vol. 37, no. 9, pp. 916–920, 2014.

[29] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security. ACM, 2016, pp. 3–16.

	I Introduction
	II Blockchain Preliminaries
	II-A Proof of Work and Mining
	II-B Honest Mining Strategy

	III Blockchain Mining Model
	IV Mining Through RL
	IV-A Preliminaries for Original Reinforcement Learning Algorithm
	IV-B New Reinforcement Learning Algorithm for Mining

	V Performance Evaluations
	VI Conclusion
	References

