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Abstract

Digital electronics is a technological cornerstone in our modern society which has covered the
increasing demand in computing power during the last decades thanks to a periodic doub-
ling of transistor density and power efficiency in integrated circuits. Currently, such scaling
laws are reaching their fundamental limits, leading to the emergence of a large gamut of
applications that cannot be supported by digital electronics, specifically, those that involve
real-time analog multi-data processing, e.g., medical diagnostic imaging, robotic control and
remote sensing, among others. In this scenario, an analog computing approach implemen-
ted in a reconfigurable non-electronic hardware such as programmable integrated photonics
(PIP) can be more efficient than digital electronics to perform these emerging applications.
However, actual analog computing models such as quantum and neuromorphic computa-
tion were not conceived to extract the benefits of PIP technology (and integrated photonics
in general). In this work, we present the foundations of a new computation theory, termed
Analog Programmable-Photonic Computation (APC), explicitly designed to unleash the full
potential of PIP. Interestingly, APC enables overcoming some of the basic theoretical and
technological limitations of existing computational models, can be implemented in other tech-
nologies (e.g. in electronics, acoustics or using metamaterials) and, consequently, exhibits the
potential to spark a ground-breaking impact on our information society.
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Introduction

Over the last decades, digital electronic technology has supported the increasing demand
in signal processing and computing power thanks to an exponential performance scaling in
microelectronics. In particular, this progress is embodied in Moore’s and Dennard’s laws
by which the density of transistors, power efficiency and clock frequency in microprocessors
has approximately doubled every 18-24 months [1, 2]. Nevertheless, as seen in Fig. 1a, these
scaling laws are reaching their fundamental limits. As a result, there is currently a wide
range of emerging real-time signal processing and computing applications (including medical
diagnostic imaging, robotic control, remote sensing, smart homes, and autonomous driving,
among others) which may not be efficiently dealt with using the dominant digital electronic
paradigm [1–6].

Despite the fact that the electronic industry has proposed to circumvent the end of Moore’s
and Dennard’s laws by introducing multi-core technology, there is a limit in the number
of cores that can simultaneously be powered on with a fixed power budget and a constant
heat extraction rate (Amdahl’s law) [2, 3]. Moreover, as the bandwidth limitations of silicon
electronics and printed metallic tracks are reached, the time and power consumed in data
transport in an electrical circuit cannot be further reduced [2, 4]. These physical bottlenecks
− in combination with the fact that conventional computational models are conceived as
serialized and centralized processing architectures (von Neumann machines) implementing the
nonlinear Boolean algebra − severely limit the performance of digital electronic computers
[1,2,7–9]. In general, such schemes are inefficient to perform multi-linear analog operations and
computational architectures that are distributed, parallel and adaptive (Fig. 1b); for instance,
those used to perform real-time matrix operations, requiring low latency, high bandwidth, low
energy consumption and high reconfigurability (such as the applications mentioned above)
[5, 6].

Although from the Church-Turing thesis can be inferred that any class of computational
problem (or computable function) can be solved by a digital electronic computer [2, 10], this
does not imply that digital computation (DC) [9] and electronic technology always lead to the
most suitable marriage between a mathematical computing theory and a hardware platform.
Other non-digital computing approaches implemented in alternative system-on-chip technolo-
gies can be mathematically more efficient than DC to solve the aforementioned computational
scenarios and may provide hardware advantages over electronics in basic performance paramet-
ers (latency, bandwidth, parallelism, power consumption, or reconfigurability) [1, 5, 6, 10, 11].
Specifically, technologies that are inherently capable of performing analog operations offering
complementary hardware requirements to those of electronics and being CMOS-compatible
are a priority [4, 12,13].

In this context, programmable integrated photonics (PIP) is the ideal technology to explore
an analog computation paradigm since it is a hardware platform with complementary features
to electronics (providing lower latency, higher bandwidth, massive parallelism via wavelength-
division multiplexing (WDM), lower power consumption and higher reconfigurability) and
which may be integrated into existing microelectronic processors by exploiting its CMOS
compatibility via silicon photonic platforms (Fig. 1c) [12–14]. Furthermore, PIP benefits from
the scalable fabrication methods of integrated circuits and its manufacturing could achieve
economies of scale comparable with microelectronic industry in the next decades [12].
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So far, in the same vein as other optical computing platforms [4–7,11,15–19], PIP has es-
sentially been explored as a hardware acceleration solution for existing computational models
such as DC [9], quantum computation (QC) [10] and neuromorphic computation (NC) [20]
implemented in electronic circuits. Here, PIP only carries out analog signal processing tasks
(i.e. wave transformations) which involve a high degree of complexity in electronics (in par-
ticular, multi-dimensional wave transformations via vector-by-matrix multiplications [12–14]),
but does not perform true computational tasks (i.e. operations among units of information,
e.g., among digital bits). In fact, at present, there is no specific computation theory available
explicitly designed for PIP (and integrated photonics in general) that allows us to exploit this
technology to implement true optical computing, in the same way as DC sparked a paradigm
shift in commercial electronics. Moreover, DC, QC and NC were not conceived to extract the
benefits of PIP since these models were originally built without considering the complexity of
their implementation in integrated optics [4, 6, 11, 16,21,22].

Being PIP a hardware technology that naturally performs analog matrix transformations on
optical signals, and whose building block may be designed by using a mathematical framework
similar to QC [23], one could ask whether a classical version of QC might be proposed within
the realm of classical wave-optics. Different works have been reported revolving around this
idea in order to [24–30]: (i) simulate a quantum computer with a classical computer and
(ii) dig into the fundamental differences between quantum and classical systems. However,
to our knowledge, the QC formalism has never been extrapolated to a classical scenario to
construct an analog computing landscape, based on deterministic physical laws, which allows
us to overcome some of the main theoretical and technological limitations of QC [10,25,31,32]
(e.g., the need to operate with extreme low temperatures, the practical difficulties to scale
the capabilities of a quantum computer to a large number of quantum bits (qubits), the
wave function collapse in data measurement, and the impossibility of performing cloning,
summation, feedback and non-unitary operations) and being explicitly designed to harness
the full potential of PIP technology.

To this end, here we present the foundations of an entire new class of computation theory,
termed as Analog Programmable-Photonic Computation (APC). To achieve this overall aim,
we will follow the steps sketched in Fig. 1d. Firstly, we will propose a unit of information
named as analog bit (or anbit) and defined as a two-dimensional (2D) analog function (similar
to the qubit, but with essential differences, as detailed below). Secondly, we will introduce
the basic operations (i.e. gates) among anbits formalising the underlying algebra. Thirdly,
we will design the circuit implementations of these gates using PIP technology and, fourthly,
we will specify a roadmap to further develop the APC in future works. Finally, a qualitative
comparison among the main properties of APC, DC, QC and NC is discussed, assessing the
unique potential and versatility offered by this computing paradigm.

Results

Unit of information: the analog bit

APC emerges around the concept of performing analog operations on a new unit of information,
the anbit, which must be easily implementable using PIP technology. In this vein, considering
that the building block of PIP is usually an optical circuit carrying out 2×2 matrix transforma-
tions [12–14,23], we define an anbit as a 2D vector function ψ (t) = ψ0 (t) ê0+ψ1 (t) ê1, where
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ψ0,1 are scalar complex functions referred to as the anbit amplitudes and ê0,1 are constant
orthonormal vectors. The user information is encoded in the moduli and phases of ψ0,1, which
may be directly implementable in PIP using two classical optical wave packets propagated in
the fundamental modes of two parallel uncoupled waveguides, a technique termed as space-
encoding modulation (see Fig. 2a and Methods). In this work, for the sake of simplicity, the
temporal shape of the wave packets are assumed rectangular (quasi-rectangular in practice,
e.g., using super-Gaussian pulses). In this fashion, the anbit amplitudes can be regarded as
time-invariant functions (complex numbers) within the time intervals where ψ0,1 are defined.
Thus, in contrast to the discrete 1D nature of the bit used in DC (whose value may be 0
or 1), ψ0,1 can actually take on a continuous range of complex values. Alternative physical
implementations of an anbit can be proposed by generating diverse shapes of the wave packets
in the space, mode, polarisation, frequency and time domains, giving rise to different anbit
modulation formats (Supplementary Note 1). Moreover, the following noteworthy features of
an anbit should be highlighted:

• Hilbert space. The single-anbit vector space E1 = span{ê0, ê1} in combination with
the standard complex inner product

〈
·|·
〉

lead to a Hilbert space with a finite norm
(0 ≤ ‖ψ‖ <∞) whose square provides information about the optical power (P) propag-
ated by the waveguides depicted in Fig. 2a: P ≡ ‖ψ‖2 =

〈
ψ|ψ

〉
= |ψ0|2 + |ψ1|2 (see

Methods).

• Dimension. Although, in general, we will work in a Hilbert space with dimension d = 2,
we have the possibility of defining the unit of information in a Hilbert space with d ≥ 1,
leading to different versions of APC termed as d-APC (the usual case with d = 2 will be
referred to as APC for short). In Supplementary Note 4, we discuss how to construct
the theory with d 6= 2.

• Anbit period. ψ is defined in a time interval TANBIT, termed as the anbit period, en-
compassing from the beginning of ψ0 or ψ1 to the end of ψ0 and ψ1 (Fig. 2a). The
anbit amplitudes are defined in different time intervals T0 and T1 (with the possibility
of setting T0 = T1 or T0 6= T1), and the time delay ∆T between ψ0 = |ψ0| ei∠0 and
ψ1 = |ψ1| ei∠1 establishes a differential phase ∠1 − ∠0 = ωc∆T , where ωc is the angular
frequency of the optical carrier.

• Measurement and degrees of freedom. The recovering of the user information at the
receiver will be referred to as the anbit measurement and can be carried out via two
different ways: (i) a coherent measurement, implementable using coherent detection, or
(ii) a differential measurement, associated to a direct detection scheme (Fig. 2b). The
former retrieves the moduli and phases of ψ0,1 (4 real degrees of freedom) and the latter
only provides information about |ψ0,1|2 and ∠1 − ∠0 (3 real degrees of freedom, in this
case the global phase of ψ0,1 cannot be recovered, see Supplementary Note 1). Hence,
the number of effective degrees of freedom (EDFs) where the user information can be
encoded depends solely on the kind of anbit measurement employed at the receiver.
Although a differential measurement provides the lowest number of EDFs, it is the most
economical anbit measurement strategy in PIP.
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• Geometric representations. An anbit with 4 EDFs (coherent measurement) can be geo-
metrically represented by using a polar diagram illustrating the moduli and phases of
ψ0,1 (Fig. 2c). An anbit with 3 EDFs (differential measurement) may be represented in
the generalised Bloch sphere (GBS), with a radius different from 1 (Fig. 2d).

• Multiple anbits. A multi-anbit gate will require to operate in a Hilbert space ‘higher’
than E1. The construction of such a Hilbert space can be carried out in APC by using the
tensor product [33] or the Cartesian product [34]. The former will allow us to extrapolate
multi-anbit gates from QC (e.g. controlled gates). The latter will be of great benefit to
construct multi-anbit linear operations which otherwise would exhibit a nonlinear nature
using the tensor product (e.g. the fan-in and fan-out gates, see below). In Supplementary
Note 1, we detail the main properties of the tensor and Cartesian products within the
framework of APC.

Despite the fact that the anbit is similar to the qubit (and to its classical counterpart, the
cebit [24]), the following fundamental differences should be highlighted: (i) the anbit norm
may be different from 1 and can be modified using a non-unitary operation, (ii) the vector
superposition of ê0 and ê1 is preserved after an anbit measurement (Fig. 2b), (iii) an anbit
has 1 or 2 more EDFs than the qubit, (iv) multiple anbits can be composed by using not
only the tensor product but also the Cartesian product, (v) an anbit may be defined in a
one-dimensional Hilbert space (the qubit cannot be restricted to one dimension given that a
global phase is not observable [10]). However, in contrast to QC, in APC we will not be able
to perform instantaneous non-local operations among different anbits (i.e., the entanglement
of multiple units of information) because the underlying physical laws are deterministic [35].

Furthermore, taking into account the vector formalism required to describe an anbit and
its mathematical similitude with a qubit (but with the essential differences discussed above),
let us introduce at this point the use of Dirac’s notation in order to: (i) simplify the mathem-
atical calculations when designing complex APC computing architectures and (ii) extrapolate
diverse analysis and design strategies from QC, preserving the same notation between both
computation theories. Therefore, from now on, let us express the anbit as

∣∣ψ
〉
= ψ0

∣∣0
〉
+ψ1

∣∣1
〉
,

with ψ ≡
∣∣ψ
〉
, ê0 ≡

∣∣0
〉

and ê1 ≡
∣∣1
〉
.

Fundamentals of combinational design: basic anbit gates

The second natural step to construct the computation theory is to introduce the basic anbit
operations (or gates), see Fig. 3. The simplest operation that can be built in APC is a gate
of a single anbit: a non-feedback (or combinational) system carrying out a transformation
between two different anbits, the input anbit

∣∣ψ
〉

= ψ0

∣∣0
〉
+ ψ1

∣∣1
〉

and the output anbit∣∣ϕ
〉
= ϕ0

∣∣0
〉
+ϕ1

∣∣1
〉

(Fig. 3a). Mathematically, the gate is described via an arbitrary mapping

(or operator) F̂ : E1 → E1, which will be assumed to be a holomorphic function for convenience.
In this way, such a mapping can be written as a power series F̂ = F̂(1)+F̂(2)+F̂(3)+ . . ., with
F̂(k) accounting for the linear (k = 1) and nonlinear (k > 1) responses of the gate. Considering
that the PIP circuits are typically linear systems [12–14], we will focus our attention on the
case F̂ ≡ F̂(1), that is, in linear gates. Nonetheless, it is worth mentioning that APC may also
be constructed by using nonlinear gates (see Methods).

5



Specifically, a single-anbit linear gate is described by a linear operator (or endomorphism)
F̂ exhibiting the following general properties:

• Uniqueness. The input and output anbits are always related by a unique endomorphism
F̂. This property directly follows from the uniqueness of a linear transformation between
vector spaces [36].

• Matrix representation. Given an orthonormal vector basis B1 = {|0〉 , |1〉}, the matrix
representation of F̂ is unique and is given by the expression (Supplementary Note 2):

F =

( 〈
0|F̂|0

〉 〈
0|F̂|1

〉
〈
1|F̂|0

〉 〈
1|F̂|1

〉
)
. (1)

Hence, the gate can equivalently be described by the matrix F and the input-output rela-

tion
∣∣ϕ
〉
= F̂

∣∣ψ
〉

can be expressed as
[∣∣ϕ
〉]

B1
= F

[∣∣ψ
〉]

B1
, where

[∣∣ϕ
〉]

B1
=
(
ϕ0 ϕ1

)T

and
[∣∣ψ
〉]

B1
=
(
ψ0 ψ1

)T
(T denotes the transpose matrix).

• Reversibility. By definition, a gate is reversible when F̂ is a bijective mapping (auto-
morphism). In such circumstances, det (F ) 6= 0 and the input anbit can be recovered
from the output anbit by applying the inverse mapping F̂−1, whose matrix representa-
tion is F−1. Contrariwise, a gate is irreversible when det (F ) = 0 and the input anbit
cannot be retrieved from the output anbit given that ✓∃F̂−1.

• Non-locality. The input-output relation
∣∣ϕ
〉
= F̂

∣∣ψ
〉

is non-local and causal. The input
and output anbits are respectively encoded by two different electric fields E (r1, t1) and
E (r2, t2) with r1 6= r2 and t1 < t2 (see Methods).

• Classes of linear gates. Since a linear gate can be described by a matrix, we will
use a terminology based on matrix theory [37] to define different classes of operations:
unitary gates (U-gates), general linear gates (G-gates) and general matrix gates (M-gates).
Concretely, the U-gates will account for the linear reversible mappings that preserve
the norm of the input anbit (conservative operations) via a unitary matrix transforma-
tion. Contrariwise, the G- and M-gates will describe non-conservative linear operations.
While, by definition, a G-gate is always reversible, an M-gate may be reversible or irre-
versible, encompassing both possibilities. Hence, a G-gate will be described by a general
linear (i.e. non-singular) matrix, whereas an M-gate will be associated to a general
complex matrix (singular or non-singular).

• Geometric representation. Using differential measurement (that will be the case in most
scenarios of APC), a single-anbit gate may be geometrically interpreted as a trajectory
between two different points in the GBS (Fig. 3a). Specifically, the kind of trajectory
depends on the class of the gate, see Supplementary Note 2 for more details.

• Algebraic structure and universal matrices. The U- and G-gates belong to the U(2)
and GL (2,C) Lie groups, respectively, while an M-gate belongs to the gl (2,C) Lie
algebra [37]. Using the fundamentals of these algebraic structures [10, 23, 37, 38], it is
straightforward to find a universal (or arbitrary) matrix in each class of gate, which must
be able to describe all the possible 2× 2 matrix transformations associated to the class
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when varying the value of its entries, encoded by parameters. In particular, a universal
matrix of a U-gate reads as follows [10,23]:

U = eiδRn̂ (α) = eiδ
(

cos α
2 − inz sin α

2 − (ny + inx) sin
α
2

(ny − inx) sin α
2 cos α

2 + inz sin
α
2

)
, (2)

where δ ∈ [0, 2π) is a global phase shifting and Rn̂ (α) is a rotation matrix accounting for
a rotation of an angle α ∈ [0, 2π] around an arbitrary unit vector n̂ = nxx̂+ nyŷ + nz ẑ
(nx,y,z ∈ [−1, 1]) in the GBS (Fig. 3b). In addition, a possible universal matrix of a G-
or M-gate is a parametric matrix (denoted as G or M , respectively) with the four entries
described by four independent complex numbers [37, 38]. Nevertheless, in the former
case (G-gate), the condition det (G) 6= 0 must be fulfilled.

• PIP implementation. The optical implementation (or circuit architecture) of a U-, G-
or M-gate must be able to perform the 2 × 2 matrix transformation described by its
universal matrix by utilising basic PIP devices: phase shifters (PSs), resonators, attenu-
ators, amplifiers, and beam splitters (combiners) such as directional couplers (DICs) and
multi-mode interferometers (MMIs). Since a universal matrix may be implementable by
different equivalent circuit architectures, we should introduce here the concept of
minimal circuit architecture (MCA), defined as the PIP implementation encompassing
the minimum number of basic devices. Furthermore, since any PIP circuit is fully
characterized by analysing the Lorentz reciprocity and the forward-backward (FB)
symmetry [13], we include an extended discussion about these properties within the
context of APC in Supplementary Note 2.

Uncovering the MCA of the U-, G-, and M-gates requires to explore diverse matrix factoriz-
ation techniques that allow us to implement the universal matrix of each class of operation
by utilising PIP technology. After a thorough examination of the matrix theory literature
[10,34,36–42], two different factorization techniques should be taken into consideration in our
discussions: Euler’s rotation theorem and the singular value decomposition (SVD).

As reported in ref. [23], a 2×2 universal unitary matrix of the form given by Eq. (2) cannot
be directly implemented by using mainstream PIP devices because of the arbitrary nature of
n̂. Here, we can take advantage of Euler’s rotation theorem to factorize the U matrix as a con-
catenation of three rotations around two Cartesian axes of the GBS, which are implementable
via PSs, MMIs and DICs. In addition, taking into account that a U-gate can be regarded as a
2×2 universal unitary signal processor, then the MCA of a U-gate (Fig. 3b) must be the same
as the MCA of a 2× 2 universal unitary signal PIP processor, shown in Fig. 4a of ref. [23] and
based on the Euler factorization U = eiδRn̂ (α) ≡ eiδRẑ (α3)Rx̂ (α2)Rẑ (α1). The matrices
Rẑ

(
α1,3

)
can be implemented by PSs integrated in parallel uncoupled waveguides and the mat-

rix Rx̂ (α2) may be generated by a synchronous DIC with tunable mode-coupling coefficient
κ = α2/ (2L), where L is the length of its arms. This MCA preserves the Lorentz reciprocity
but breaks the FB symmetry (provided that α1 6= α3). Equivalent circuit architectures of
a U-gate may be explored by selecting different rotation vectors when using Euler’s rotation
theorem. As an example, in Supplementary Note 2 it is shown a scheme built from fixed
couplers, based on the factorization U = eiδRẑ (α3)Rŷ (α2)Rẑ (α1).
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While a U-gate is a conservative transformation (given that it preserves the norm of the
input anbit or, equivalently, the power of the 2D wave that encodes the anbit), both G-
and M-gates are non-conservative transformations. This implies that their MCAs will require
to include attenuators and amplifiers. Remarkably, a common MCA for both kind of gates
is found from the SVD [34, 36, 39], which factorizes the universal matrices of these gates
as a function of two U-gates along with a 2 × 2 diagonal matrix with positive real entries,
implementable by using tunable optical attenuators and amplifiers (Fig. 3c). The reciprocal
(non-reciprocal) nature of such devices preserves (breaks) the Lorentz reciprocity in the MCA.
Likewise, note that the FB symmetry is broken in the MCA when using the circuit of Fig. 3b
to implement the U-gates.

Although equivalent circuit architectures of the U-, G- and M-gates can be proposed by
using matrix factorizations different from Euler’s rotation theorem and the SVD, all of them
lead to optical schemes integrating a higher number of basic PIP devices than the structures
depicted in Fig. 3 (see Supplementary Note 2).

So far, we have presented the basic operations of a single anbit. Nonetheless, bearing
in mind that PIP is a reconfigurable hardware [12–14], the design of complex combinational
architectures requires to introduce an additional fundamental piece: a controlled gate. In APC,
such a kind of gate may be defined in the same way as in QC [10]. By convention, a controlled
anbit gate performs a transformation F̂ on the target anbits when the control anbits are equal
to
∣∣1
〉
. Otherwise, the target anbits remain invariant at the output. Figure 4a illustrates the

functionality of a controlled gate with a single target anbit
∣∣t
〉

and a single control anbit
∣∣c
〉
.

Using the tensor product, the mathematical formalisation and properties of a controlled gate
in APC can be directly extrapolated from QC (Supplementary Note 2), with the essential
difference that a controlled gate may be constructed from a non-unitary F̂ mapping in APC.

An additional crucial difference between a controlled gate in APC and QC emerges when
analysing its implementation using PIP technology. Since the reconfigurability of a PIP cir-
cuit is realised by utilising classical electrical control signals [12–14], the implementation of
a controlled anbit gate does not require the intricate design strategies and architectures em-
ployed in optical QC [10, 21, 43, 44] (however, these schemes could be extrapolated to APC,
if desired). As seen in Fig. 4b, the simplest implementation of a controlled anbit gate arises
from an electro-optic design, where the control anbit is encoded by the electrical control sig-
nals of the PIP platform and the target anbit is encoded by a 2D optical wave (alternatively,
both control and target anbits can be encoded by optical waves, giving rise to an all-optical
architecture requiring a higher footprint than that of the electro-optic design, see Fig. 4c). In
this fashion, the same MCAs as those of the U-, G-, and M-gates (Fig. 3) may be employed to
perform controlled operations of each kind of gate. Therefore, the electro-optic architecture
only entails the definition of a mapping between the control anbit and the electrical control
signals of the PIP circuit (e.g. via software [45]).

As an illustrative example, the electro-optic implementation of the controlled-NOT (CNOT)
gate is sketched in Fig. 4d. Any suitable mapping between the control anbit and the electrical
control signals must guarantee that the 2 × 2 unitary matrix transformations F = iRx̂ (π)
(the Pauli matrix σx) and F = I (the identity matrix) are induced on the amplitudes of

∣∣t
〉

when
∣∣c
〉
=
∣∣1
〉

and
∣∣c
〉
=
∣∣0
〉
, respectively. It is worthy to note that, in contrast to the

seminal optical implementation of the quantum CNOT gate reported in ref. [43], in APC the
implementation of this gate integrates a lower number of basic devices and does not require
to use extra (ancilla or garbage) units of information.
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Interestingly, the concept of controlled gates can be easily extended to the case of multiple
control anbits without requiring extra devices in the optical circuits. Accordingly, multi-
controlled operations such as the Toffoli gate (an indispensable tool to implement Boolean
functions) can be carried out in APC using the same circuit as that of Fig. 4d by encoding an
additional control anbit in the electrical control signals, see Supplementary Note 2.

Fundamentals of sequential design: taming prohibited operations in QC

In a combinational system such as the U-, G-, and M-gates, the outputs depend solely on the
inputs. Nevertheless, in a sequential system, the outputs can be connected with the inputs
allowing feedback operations. Since sequential architectures are of paramount importance in
DC (e.g. to construct digital memories [8, 9]), we wonder about the possibility of exploiting
such a kind of systems within the context of APC.

Remarkably, in contrast to QC, feedback schemes will be allowed in APC thanks to the
feasibility of performing summation (fan-in) and cloning (fan-out) of anbits using PIP circuits.
These are prohibited operations within the realm of QC that will however play a fundamental
role to construct any sequential architecture in APC. Concretely, both fan-in and fan-out anbit
gates can be implemented via the PIP circuit depicted in Fig. 5a, which preserves the Lorentz
reciprocity and the FB symmetry (provided that the amplifiers have a reciprocal and FB
symmetric behaviour). This scheme transforms the input anbits

∣∣ψ
〉

and
∣∣ϕ
〉

into the output
anbits

∣∣ψ + ϕ
〉
=
(
ψ0 + ϕ0

)∣∣0
〉
+
(
ψ1 + ϕ1

)∣∣1
〉

and
∣∣ψ − ϕ

〉
=
(
ψ0 − ϕ0

)∣∣0
〉
+
(
ψ1 − ϕ1

)∣∣1
〉
.

Thus, setting
∣∣ϕ
〉
=
∣∣0
〉
= 0

∣∣0
〉
+ 0
∣∣1
〉

(the null vector of E1) we will carry out a fan-out
operation of the anbit

∣∣ψ
〉

(a perfect cloning) and taking
∣∣ϕ
〉
6=
∣∣0
〉

we will perform a fan-in
operation of the anbits

∣∣ψ
〉

and
∣∣ϕ
〉
. Moreover, in order to guarantee a linear behaviour, both

fan-in and fan-out gates should be defined by using the Cartesian product, which allows us
to independently transform the anbit amplitudes ψ0, ψ1, ϕ0 and ϕ1 (conversely, the tensor
product leads to multi-anbit nonlinear operations, see Supplementary Note 3, including a more
in-depth discussion about the mathematical properties and optical implementation of these
gates).

Figure 5b shows the simplest sequential architecture that can be built in APC, integrated
by both fan-in and fan-out gates along with two M-gates (M̂1 and M̂2) to complete the feed-
back loop. The analysis of the input-output relation

∣∣ϕ
〉
= M̂eq

∣∣ψ
〉

indicates that this sequen-
tial scheme is equivalent to a combinational M-gate described by the matrix representation
Meq =

(
I − M1M2

)−1
M1. Hence, the existence of Meq is closely linked to the condition

det
(
I −M1M2

)
6= 0. Contrariwise, the loop cannot be built because the matrix I −M1M2

is singular. In Supplementary Note 3, we provide further information about the analysis and
properties of this structure.

Although the same single-anbit operation M̂eq can be implemented via the MCA of an
M-gate (Fig. 3c), the potential of this basic sequential scheme relies on the fact that it estab-
lishes the fundamental strategies to analyse and design more complex sequential architectures
in APC. For instance, the intricate multi-anbit combinational scheme shown in Fig. 5c can el-
egantly be simplified with the equivalent sequential architecture depicted in Fig. 5d, composed
by a lower number of gates. Surprisingly, both systems have the same input-output relation
(see Supplementary Note 3).
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Discussion

These results lay the theoretical foundations of APC, a new computing paradigm conceived
to exploit the full potential of PIP technology and, consequently, leading to the emergence of
an entire field of research within computational science and photonics. In addition, APC can
be regarded as a new optical design toolbox which blazes a trail for manufacturing advanced
photonic computing architectures that can team-up with digital electronic processors to unlock
in the near- and middle-term the serious limitations imposed by the demise of Moore’s and
Dennard’s laws.

Bearing in mind that this work is completely devoted to establishing the fundamentals of
APC, a roadmap must be specified to further develop this computation theory in forthcoming
works (Fig. 1d). Firstly, the fundamentals of combinational design should be extended to the
case of multiple anbits for both U- , G-, and M-gates. We may expect that the MCA of these
multi-anbit gates can also be employed to implement controlled gates with multiple target
anbits (encoding the control anbits in the electrical control signals of the PIP platform).
Secondly, the fundamentals of sequential design should be further developed to the case of
multiple anbits, embracing the research of fan-in, fan-out and feedback operations. Given
that a digital memory is built from a multi-bit sequential architecture in DC [9], the study
of multi-anbit feedback schemes could be of paramount importance to revisit the concept of
memory within the scope of APC. Outstandingly, the capacity to scale both combinational and
sequential architectures to multiple anbits is inherently related to the feasibility to scale the
PIP circuits integrating multiple waveguides [12–14] in combination with the exploitation of
WDM technique [19] to perform massive parallel computing of anbits. Thirdly, APC must be
completed by conceiving a specific gamut of analog search algorithms to speed up the solution
of a representative set of deterministic polynomial time (P) and non-deterministic polynomial
time (NP) computational problems (here, it is not possible to rigorously specify such a set of
problems because it previously requires to completely develop the multi-anbit operations. In
any case, as an example, two possible P and NP problems that could be evaluated are the
maximum cardinality matching [46] and the integer factorization problem [47], respectively).
The time, resources and energy required in APC to solve these computational problems must
be compared with the time, resources and energy required in DC, QC and NC using the general
methodologies of computational science [10,48].

Compared with these existing computational models, APC relaxes some of their theoretical
and technological limitations, see Table 1. While in APC we have the possibility of defining
both linear and nonlinear gates, DC and QC can only be constructed from nonlinear and
linear gates, respectively [9,10]. Moreover, NC embraces both linear and nonlinear operations,
but the global transformation induced on the units of information in a neural network is
nonlinear [49]. In contrast, in APC there exists the possibility of exclusively performing linear
or nonlinear operations (or a combination of both). A similar remark applies to the reversible
and irreversible nature of the operations. Both design possibilities can be found in APC via
the U-, G- and M-gates, a feature that is not shared by the other computation theories (in
DC reversible operations are not efficient since ancilla and garbage bits are required [50], in
QC all operations are reversible, and in NC the multi-dimensional transformation of a neural
network is irreversible, inherited from its nonlinear nature).
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On the other hand, an essential difference between DC and APC relies on the fact that a
combinational APC architecture can take advantage of both forward and backward propaga-
tions of light to compute the double of units of information (the same (a different) multi-
anbit transformation will be induced in each propagation direction when the circuit preserves
(breaks) the FB symmetry). This property also applies to QC and NC when implementing
the corresponding computational architectures via PIP technology [6, 44].

The additional properties shown in Table 1 highlight common differences of APC, DC
and NC with QC. Although QC provides the outstanding feature of performing instantaneous
non-local operations (via the entanglement of qubits, a characteristic that is not shared by
the other computation theories), APC can be readily implemented by current PIP technology
operating at room temperature. Along this line, it is worth mentioning that APC can also be
implemented in any technological platform enabling analog signal processing based on matrix
transformations (e.g. optical metamaterials [17,18], electronics [27,51,52] and acoustics [53]).

Likewise, being APC a computation theory using classical waves, we may expect that this
new computing paradigm has more tolerance to external noise than QC. This subsequently
implies that we will require a lower number of extra units of information than in QC to detect
and correct the data errors, simplifying the scalability of APC architectures to a large number
of anbits.

An additional intriguing feature of APC arises from the general nature of its mathematical
framework, inherited from the versatile properties of the anbit and the basic gates, allowing
to implement (at least partially) other computing paradigms using APC architectures (see
Supplementary Note 5).

Given that any computation theory has associated an information theory, APC also leads
to an additional field of research: the Analog Programmable-Photonic Information (API). Con-
cretely, API will be focus on the study of anbit modulation formats (Supplementary Note 1),
analysis of noise, error detection and correction strategies, entropy analysis, data compression,
and cryptography techniques. Both APC and API have the potential to spark a crucial impact
on fundamental and applied research, as well as on our information society.

Methods

Space-encoding modulation

The description of this modulation format (similar to the path-encoding strategy employed
in optical QC [54]) can be done by specifying the electric field strength encoding the anbit of
Fig. 2a. According to the usual features of the optical waveguides employed in PIP [13], we
may assume that the parallel waveguides of Fig. 2a have a negligible inter-waveguide mode-
coupling and operate in the paraxial and single-mode regimes. Hence, a space-encoded anbit
is characterized by an electric field of the form:

E (r, t) ≃
1∑

k=0

Re
{
ψk

(
t− β(1)k r‖

)
êk (r⊥,1, r⊥,2, ωc) e

iωcte−iβ
(0)
k

r‖

}

=
1∑

k=0

∣∣∣ψk

(
t− β(1)k r‖

)∣∣∣ êk (r⊥,1, r⊥,2, ωc) cos
(
ωct− β(0)k r‖ + ∠k

)
, (3)
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where the anbit amplitudes ψ0 = |ψ0| ei∠0 and ψ1 = |ψ1| ei∠1 play the role of the optical
wave packets (or complex envelopes), ωc is the angular frequency of the optical carrier,
r = r⊥,1r̂⊥,1 + r⊥,2r̂⊥,2 + r‖r̂‖ is the vector position written as a function of its transverse

(r⊥,1, r⊥,2) and longitudinal (r‖) components, and êk and βk (ω) ≃ β
(0)
k + (ω − ωc)β

(1)
k are

respectively the normalised mode profile and the propagation constant of the fundamental

mode in waveguide k (being β
(0)
k = βk (ω = ωc), β

(1)
k = dβk (ω = ωc) /dω and omitting the

dispersive terms β
(n≥2)
k in the Taylor series expansion of βk (ω)). In particular, êk must satisfy

the condition [55]: ∫∫ ∞

−∞
êk × ĥ∗

k · r̂‖dr⊥,1dr⊥,2 = 2, (4)

being ĥk the normalised mode profile of the magnetic field strength. Equation (4) guarantees
that the optical power propagated by the fundamental modes of both waveguides can be
calculated as P = |ψ0|2 + |ψ1|2.

Using Eq. (3), it is straightforward to describe the electric field strength at the input
E (r1, t1) and at the output E (r2, t2) of the single-anbit gate depicted in Fig. 3a, which must
be particularised at two different vector positions r1 6= r2 and time instants t1 6= t2. Taking
into account the causal response of the materials employed in PIP [13], then it follows that
t1 < t2. Hence, the input-output relation of the gate is non-local and causal.

Nonlinear anbit gates

Single-anbit nonlinear gates can be implemented in PIP, e.g., by means of the Pockels and
Kerr effects, which allow to carry out second- and third-order nonlinear anbit transforma-
tions, respectively. For instance, stimulating the self-phase modulation effect in two parallel
uncoupled waveguides (similar to those of depicted in Fig. 2a), a nonlinear anbit operation of

the form F̂
∣∣ψ
〉
= ψ0 exp

(
−iγ

∣∣ψ0

∣∣2Leff

)∣∣0
〉
+ ψ1 exp

(
−iγ

∣∣ψ1

∣∣2Leff

)∣∣1
〉

may be obtained (γ and
Leff are nonlinear parameters of the waveguides [56]). In the same vein, optical devices such
as nonlinear directional couplers [57] and ring resonators [58] can also be employed to exploit
third-order nonlinearities in silicon platforms.

The most general definition of a single-anbit gate (including both linear and nonlinear
contributions) is given by the expression F̂

∣∣ψ
〉
:= f0

(
ψ0, ψ1

)∣∣0
〉
+ f1

(
ψ0, ψ1

)∣∣1
〉
, with f0 and

f1 belonging to F
(
C
2,C

)
. Thus, F̂ will induce a nonlinear transformation on the input

anbit when the functions f0,1 have a nonlinear behaviour. Therefore, using holomorphic f0,1
functions in a neighbourhood of a reference point

(
ψ0,ref , ψ1,ref

)
∈ C

2, we will be able to build
a nonlinear response of the desired order.

The main drawback of operating with nonlinear anbit gates relies on the fact that we
cannot deal with a matrix formalism. Nevertheless, the mathematical description of the above
nonlinear anbit operation can be simplified by performing a Taylor series expansion of f0,1. To
this end, let us introduce the vectors z := ψ0ẑ0+ψ1ẑ1 and zref := ψ0,ref ẑ0+ψ1,ref ẑ1 belonging
to the vector space Z = span {ẑ0, ẑ1} (isomorphic to C

2) and being ẑ0,1 complex orthonormal

vectors. In this way, we can write F̂ =
∑∞

n=1 F̂
(n) where:

F̂(n)
∣∣ψ
〉
=

1

n!
dn f0⌋zref (z)

∣∣0
〉
+

1

n!
dn f1⌋zref (z)

∣∣1
〉
, (5)
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is the n-th order nonlinear response of the gate with:

dnf0⌋zref (z) =
∑

i1,...,in∈{0,1}

ψi1 · · ·ψin

∂nf0
(
zref
)

∂ẑi1 · · · ∂ẑin
, (6)

and similar for dnf1⌋zref (z). Obviously, this nonlinear mathematical framework should be
further extended in forthcoming contributions by defining diverse classes of nonlinear anbit
gates, encompassing both combinational and sequential computational architectures.
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Fig. 1 Limitations of digital electronics and new computation theory proposed in this work.

a Historical evolution and perspective of the main performance parameters of digital electronics [3].
b Distributed, parallel and adaptive network performing multi-linear analog operations via real-time
matrix transformations of the input signals, a scenario where digital electronic paradigm shows signi-
ficant mathematical and technological limitations [5, 6]. c Programmable integrated photonic (PIP)
circuit integrated into a silicon photonic platform. This system-on-chip technology carries out parallel
reconfigurable matrix transformations on the analog input signals using optical interference as a funda-
mental physical principle. d Flowchart of the steps required to construct the new computation theory,
termed Analog Programmable-Photonic Computation (APC) and implementable with PIP technology.
APC revolves around the idea of performing analog operations on a new unit of information, the analog
bit (anbit), evolving the concept of optical signal processing shown in (c) into true optical computing.
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Fig. 2 The analog bit. a Physical implementation of an anbit ψ (t) = ψ0 (t) ê0 +ψ1 (t) ê1 using PIP
technology and a space-encoding modulation (see Methods). The anbit amplitudes ψ0,1 = |ψ0,1| ei∠0,1

are encoded by the optical wave packets propagated in the fundamental modes ê0,1 of two uncoupled
waveguides. b Different classes of anbit measurement using coherent or direct detection at the optical
receiver. In the former case, an anbit of the form Rψ0ê0 + Rψ1ê1 is measured, where R is the
responsivity of the photodiodes. In the latter case, an anbit of the form R|ψ0|2 ê0+R|ψ1|2 ei(∠1−∠0)ê1
is retrieved (Supplementary Note 1). c Geometric representation of an anbit with 4 effective degrees of
freedom (EDFs) using a polar diagram in the complex plane. d Geometric representation of an anbit
with 3 EDFs in the generalised Bloch sphere (GBS). In such a situation, the anbit ψ can be rewritten
as ψ =

√
P
[
cos
(
θ/2
)
ê0 + eiϕ sin

(
θ/2
)
ê1
]
, see Supplementary Note 1.
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Fig. 3 Basic combinational anbit gates. a A combinational single-anbit gate is a non-feedback
system performing a transformation between two different 2D vector functions: the input anbit∣∣ψ
〉
= ψ0 (t)

∣∣0
〉
+ ψ1 (t)

∣∣1
〉

and the output anbit
∣∣ϕ
〉
= ϕ0 (t)

∣∣0
〉
+ ϕ1 (t)

∣∣1
〉
. Using differential

anbit measurement, the gate can be geometrically represented as a trajectory between two different
points in the GBS. b Minimal circuit architecture (MCA) of a U-gate, implementing the universal
unitary matrix of Eq. (2) via the Euler factorization U = eiδRn̂ (α) ≡ eiδRẑ (α3)Rx̂ (α2)Rẑ (α1). The
U-gate generates a rotation around an arbitrary unit vector n̂ of the GBS, preserving the norm of the
input anbit. c MCA of a G- and M-gate, based on the singular value decomposition. While a G-gate
is a reversible operation (two different input anbits

∣∣ψa

〉
and

∣∣ψb

〉
are always transformed into two

different output anbits
∣∣ϕa

〉
and

∣∣ϕb

〉
), an M-gate may be an irreversible operation (two different input

anbits
∣∣ψa

〉
and

∣∣ψb

〉
may generate the same output anbit

∣∣ϕa

〉
).
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Fig. 4 Controlled anbit gates. a Functional scheme of a controlled gate with a single control anbit∣∣c
〉
∈
{∣∣0
〉
,
∣∣1
〉}

and a single target anbit
∣∣t
〉
. Inspired in a controlled quantum gate [10], the operation

F̂ (a U-, G-, or M-gate) is applied to
∣∣t
〉

when
∣∣c
〉
=
∣∣1
〉

or, otherwise,
∣∣t
〉

remains invariant at the
output. b Electro-optic design of a controlled gate. The PIP circuit must implement the MCA of
the F̂-gate (here we depict the MCA of an M-gate to cover the general case), whose basic devices are
controlled by electrical signals (blue lines) mapped with the electrical amplitudes of

∣∣c
〉
= c0

∣∣0
〉
+c1

∣∣1
〉
,

e.g., via software [45]. The optical inputs encode the amplitudes of
∣∣t
〉
= t0

∣∣0
〉
+ t1

∣∣1
〉

(black lines). c

All-optical design of a controlled gate. The optical inputs encode the amplitudes of
∣∣c
〉
⊗
∣∣t
〉
, where

⊗ is the tensor product. d Electro-optic implementation of the controlled-NOT anbit gate. The PIP
circuit is the MCA of a U-gate since F = σx is a unitary matrix.
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Fig. 5 Sequential anbit architectures. a Optical implementation using PIP technology of both
fan-in (FI) and fan-out (FO) anbit gates. The FI operation maps the input

∣∣ψ
〉
×
∣∣ϕ
〉

into the output∣∣ψ+ϕ
〉
×
∣∣ψ−ϕ

〉
, where × is the Cartesian product. The FO operation performs a perfect cloning of∣∣ψ

〉
when ϕ0 = ϕ1 = 0, i.e., taking

∣∣ϕ
〉
=
∣∣0
〉
, where

∣∣0
〉
= 0
∣∣0
〉
+ 0
∣∣1
〉

is the null anbit. b Sequential
computational architecture of a single anbit, composed by both FI and FO gates along with 2 single-
anbit M-gates (M̂1 and M̂2). c Multi-anbit combinational architecture composed by 4 single-anbit
M-gates, 2 FI gates and 2 FO gates. d Equivalent multi-anbit sequential architecture, integrating
2 single-anbit M-gates, 2 FI gates and 2 FO gates.
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Properties DC QC NC APC

Linear computation × X × X

Nonlinear computation X × X X

Reversible operations × X × X

Irreversible operations X × X X

Forward-backward propagation × X X X

Parallel computing X X X X

Summation, cloning and feedback X × X X

Instantaneous non-locality × X × ×

Implementation with current technology X × X X

Operation at room temperature X × X X

Tolerance to external perturbations X × X X

Table 1. Qualitative comparison of APC vs digital computation (DC), quantum computation (QC)
and neuromorphic computation (NC).
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Supplementary Note 1: the analog bit

In this section, we provide further information about the analog bit (or anbit for short) in-
cluding supplementary notes about: the anbit modulation formats, the anbit measurement,
the generalised Bloch sphere (GBS), the anbit amplitudes, and the mathematical properties
of the tensor and Cartesian products within the context of Analog Programmable-Photonic
Computation (APC).

1.1 Anbit modulation formats

The optical implementation of an anbit ψ (t) = ψ0 (t) ê0 + ψ1 (t) ê1 can be carried out by
exploiting the different degrees of freedom of light (space, mode, polarisation, frequency and
time), unveiling a gamut of anbit modulation formats.

Space-encoding modulation (SEM). This modulation technique (described in Fig. 2a
and Methods of the main text) is the simplest strategy to implement an anbit in programmable
integrated photonics (PIP) using current technology.

Mode-encoding modulation (MEM). Instead of implementing ψ (t) by encoding ê0 and
ê1 in the fundamental modes of two different single-mode waveguides, we can associate ê0 and
ê1 to two different guided modes of a single waveguide operating in the multi-mode regime
(Supplementary Figure 1a). Therefore, a mode-encoded anbit is characterized by an electric
field strength of the form (paraxial regime is assumed):

E (r, t) ≃
1∑

k=0

Re
{
ψk

(
t− β(1)k r‖

)
êk (r⊥,1, r⊥,2, ωc) e

iωcte−iβ
(0)
k

r‖

}
, (1)

where the anbit amplitudes ψ0 and ψ1 are encoded by the optical wave packets (or complex
envelopes) propagated by the guided modes, ωc is the angular frequency of the optical carrier,
r = r⊥,1r̂⊥,1 + r⊥,2r̂⊥,2 + r‖r̂‖ is the vector position written as a function of its transverse

(r⊥,1, r⊥,2) and longitudinal (r‖) components, and êk and βk (ω) ≃ β
(0)
k + (ω − ωc)β

(1)
k are

respectively the normalised mode profile and the propagation constant of the k-th guided mode

(being β
(0)
k = βk (ω = ωc), β

(1)
k = dβk (ω = ωc) /dω and omitting the dispersive terms β

(n≥2)
k in

the Taylor series expansion of βk (ω)). This modulation format requires to use mode-division
multiplexing devices and circuits to generate, transform and measure the anbits.

Polarisation-encoding modulation (PEM). While the above modulation formats only
make use of a single transverse component of the electric field (in the r̂⊥,1 direction), a
polarisation-encoded anbit exploits the two transverse components ê0 and ê1 of the funda-
mental mode propagated by a single-mode waveguide (Supplementary Figure 1b). In this vein,
the electric field strength propagating a polarisation-encoded anbit is found to be (paraxial
conditions):

E (r, t) ≃
1∑

k=0

Re
{
ψk

(
t− β(1)r‖

)
êk (r⊥,1, r⊥,2, ωc) e

iωcte−iβ(0)r‖

}
, (2)
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with the same propagation constant β (ω) ≃ β(0) + (ω − ωc)β
(1) for both transverse compon-

ents of the fundamental mode considering a lowly-birefringent waveguide [1]. This modulation
format entails the utilisation of polarisation devices and systems to generate, transform and
measure the anbits.

Frequency-encoding modulation (FEM). The frequency domain can also be employed
to implement ψ (t) by encoding ê0 and ê1 in the same fundamental mode of a given single-
mode waveguide, but stimulated at two different angular frequencies ω0 and ω1. The spectral
separation between both optical carriers must avoid the frequency overlapping between the
Fourier transforms of ψ0 (t) and ψ1 (t), namely ψ̃0 (ω) and ψ̃1 (ω) (Supplementary Figure 1c).
Specifically, the electric field strength associated to a frequency-encoded anbit is (paraxial
regime):

E (r, t) ≃
1∑

k=0

Re
{
ψk

(
t− β(1)k r‖

)
ê (r⊥,1, r⊥,2, ωk) e

iωkte−iβ
(0)
k

r‖

}
, (3)

with β
(0)
k = β (ω = ωk) and β

(1)
k = dβ (ω = ωk) /dω, being β (ω) the propagation constant of

the fundamental mode. Note that the vector basis B1 = {ê0, ê1} of the anbit is implemented
with the normalised profile ê of the fundamental mode stimulated at the angular frequencies
ω0 and ω1, respectively. The Fourier transform of E takes the form:

Ẽ (r, ω) ≃
1∑

k=0

Re
{
ψ̃k (ω − ωk) ê (r⊥,1, r⊥,2, ωk) e

−iβ
(0)
k

r‖e−i(ω−ωk)β
(1)
k

r‖

}
. (4)

Here, wavelength-division multiplexing devices and circuits will be required to generate, trans-
form and measure the anbits.

Time-encoding modulation (TEM). The time domain is an additional degree of freedom
of light that can also be explored to implement an anbit in optics. The basic idea is to generate
a complex envelope of the form A (t) = ψ0 (t− t0)+ψ1 (t− t1) that will be propagated by the
fundamental mode of a single-mode waveguide. In particular, the time delay ∆τ = |t1 − t0|
must avoid the temporal overlapping between ψ0 and ψ1 (Supplementary Figure 1d). Here,
the vector basis B1 = {ê0, ê1} of the anbit is implemented with the normalised profile ê of
the fundamental mode stimulated at t = t0 and t = t1, respectively. For sufficient short
propagation distances where the chromatic dispersion of the waveguide can be neglected, the
electric field strength of a time-encoded anbit can be approximated as (paraxial regime):

E (r, t) ≃ Re
{
A
(
t− β(1)r‖

)
ê (r⊥,1, r⊥,2, ωc) e

iωcte−iβ(0)r‖

}

=
1∑

k=0

Re
{
ψk

(
t− tk − β(1)r‖

)
ê (r⊥,1, r⊥,2, ωc) e

iωcte−iβ(0)r‖

}
. (5)

However, for sufficient propagation distances, the chromatic dispersion will generate fluctu-
ations in ∆τ that could give rise to an undesirable temporal overlapping between ψ0 and ψ1.
Consequently, this propagation impairment is the main drawback of this modulation format,
which would require an external synchronization system to control the fluctuations of ∆τ
within the whole computational system.
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Supplementary Figure 1. Anbit modulation formats. a Mode-encoding modulation. b Polarisation-
encoding modulation. c Frequency-encoding modulation. d Time-encoding modulation. Each modu-
lation format exploits a different degree of freedom of light to encode an anbit.

Pulse shape. In a similar way to digital information theory [2, 3], we can engineer the
temporal shape of the complex envelopes (encoding ψ0 (t) and ψ1 (t)) to improve the toler-
ance of the above anbit modulation formats to the different propagation impairments within
a PIP circuit (optical filtering, optical crosstalk, chromatic dispersion, polarisation-mode dis-
persion, and nonlinear Kerr effects, among others [4]). In particular, using rectangular or
quasi-rectangular shapes in ψ0 (t) and ψ1 (t) (e.g., via super-Gaussian pulses), we may ex-
plore the introduction of a duty cycle (the ratio of pulse width of |ψ0 (t)| and |ψ1 (t)| over
the total time intervals T0 and T1 where ψ0 (t) and ψ1 (t) are respectively defined) to study
the pulse-to-pulse interaction between different anbits. In such a scenario, we should compare
non-return-to-zero (NRZ) versus return-to-zero (RZ) pulse shapes (Supplementary Figure 2).
This will lead to different versions of each modulation format (e.g., NRZ-SEM, 33%RZ-SEM,
50%RZ-SEM...). Likewise, arbitrary shapes of ψ0 (t) and ψ1 (t) (such as prolate spheroidal
wave functions [5]) can also be investigated in each modulation format to improve the toler-
ance of the anbit to the aforementioned propagation impairments, although it is out of the
scope of this work.

Other modulation formats. The implementation of APC in other technologies different
from PIP (e.g., in electronics or acoustics) will require to develop new modulation formats
that allow us to physically generate the anbit in the corresponding hardware platforms.
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Supplementary Figure 2. Different temporal shapes of rectangular (or quasi-rectangular) anbit
amplitudes. a Non-return-to-zero (NRZ), where the pulse width covers the whole duration of |ψ0 (t)|
and |ψ1 (t)|. b Return-to-zero (RZ), where the pulse width encompasses only a percentage (50% in
this figure) of the time intervals T0 and T1 over which |ψ0 (t)| and |ψ1 (t)| are respectively defined.

1.2 Anbit measurement

Each modulation format requires a different optical architecture to perform a coherent or a
differential anbit measurement. Here, we only discuss the architectures associated to both
classes of anbit measurement within the context of a SEM, the simplest modulation format to
implement APC using current PIP technology.

In general, any anbit measurement can be mathematically described as an anbit mapping
ψ→ ϕ, which transforms the input (optical) anbit:

ψ = ψ0ê0 + ψ1ê1 = |ψ0| ei∠0 ê0 + |ψ1| ei∠1 ê1, (6)

into an output (electrical) anbit ϕ = ϕ0ê0+ϕ1ê1. The main difference between a coherent and
a differential measurement is that each kind of measurement establishes a different mapping
between ψ and ϕ, as detailed below. In this context, for the sake of simplicity, we will assume
that any (coherent or differential) anbit measurement will be carried out at the receiver by
using the same orthonormal vector basis B1 = {ê0, ê1} as that of the transmitter.

Coherent anbit measurement. Here, the 4 real degrees of freedom of ψ (the moduli and
phases of ψ0,1) can be completely recovered, leading to 4 effective degrees of freedom (EDFs)
where the user information can be encoded and retrieved. Using a coherent optical receiver,
e.g., combining two quadrature homodyne receivers (Supplementary Figure 3), the phase and
quadrature photocurrents obtained are (see pp. 66-68 of ref. [6]):

II,k = R|ψk| cos∠k, (7)

IQ,k = R|ψk| sin∠k, (8)

where k ∈ {0, 1} and R is the responsivity of the photodiodes. Next, applying a simple signal
processing routine to the above photocurrents using the expressions:

|ψk| =
1

R
√
I2I,k + I2Q,k, ∠k = arctan

IQ,k

II,k
, (9)

we will be able to retrieve the moduli and phases of ψ0,1. Consequently, we can safely assume
that the output (electrical) anbit is of the form ϕ = R|ψ0| ei∠0 ê0 +R|ψ1| ei∠1 ê1 ≡ Rψ.
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Supplementary Figure 3. Structure of the optical receiver proposed to perform a coherent anbit
measurement. The system is composed by two quadrature homodyne receivers (PBS: polarisation
beam splitter) [6].

Differential anbit measurement. Using two different photodiodes with the same respons-
ivity R to measure ψ0 and ψ1 via direct detection (see Fig. 2b), we will obtain two independent
photocurrents: I0 = R|ψ0|2 and I1 = R|ψ1|2. The time delay between both photocurrents
will be the same as the time delay ∆T between ψ0 (t) and ψ1 (t) depicted in Fig. 2a. As men-
tioned in the main text, ∆T provides information about the differential phase between ψ0 and
ψ1 via the relation ∠1 −∠0 = ωc∆T , where ωc is the angular frequency of the optical carrier.
Consequently, the output anbit is found to be ϕ = R|ψ0|2 ê0 +R|ψ1|2 ei(∠1−∠0)ê1.

As seen, this anbit measurement technique only provides 3 EDFs where the user information
can be encoded and retrieved: |ψ0|, |ψ1| and ∠1−∠0. Here, the phase ∠0 cannot be recovered.
Consequently, this (global) phase term can be omitted to describe ψ, which may be restated
as:

ψ = |ψ0| ê0 + |ψ1| ei(∠1−∠0)ê1. (10)

Note that Supplementary Equations 6 and 10 generate the same output anbitϕ in a differential
measurement. For this reason, both expressions are considered to be equivalent to describe
the input anbit. Alternatively, the above equation can be rewritten as:

ψ =
√
P
(
cos

θ

2
ê0 + eiϕ sin

θ

2
ê1

)
, (11)

by identifying
√
P cos (θ/2) ≡ |ψ0|,

√
P sin (θ/2) ≡ |ψ1|, ϕ ≡ ∠1 − ∠0 and P ≡ |ψ0|2 + |ψ1|2.

In particular, Supplementary Equation 11 will allow us to geometrically represent an anbit
with 3 EDFs in the generalised Bloch sphere (see below).

On the other hand, a particular scenario associated to a differential measurement should
be mentioned. The case where the differential phase ∠1 − ∠0 is not encoded by a time delay
∆T between ψ0 and ψ1 at the transmitter. This can be done, for instance, modulating ψ0
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and ψ1 with two different optical carriers having the same angular frequency ωc but exhibiting
a different phase ∠0 6= ∠1 at t = 0. In such a situation, the differential phase ∠1 − ∠0

cannot be recovered with a differential anbit measurement because the time delay between
the photocurrents is found to be null. Here, a differential measurement will only recover the
information encoded by |ψ0| and |ψ1| (2 EDFs). This remark highlights the importance of the
parameter ∆T depicted in Fig. 2a of the paper.

1.3 Geometric representation: the generalised Bloch Sphere (GBS)

The construction of the GBS is actually more complex than a mere analogy of Supplementary
Equation 11 with the spherical coordinates

(√
P, θ, ϕ

)
in the vector space R

3. Specifically, the
construction of the GBS can be regarded as a geometrical transformation of the hypersphere
S2
(√
P
)
⊂ R

3 into the hypersphere S3
(√
P
)
⊂ C

2 [7, 8]. Supplementary Figure 4 illustrates
such a transformation, summarised in the following steps:

1. Let us start from an anbit with 3 EDFs described by Supplementary Equation 10.
Here, we can identify the 3-tuple

(
|ψ1| cos (∠1 − ∠0) , |ψ1| sin (∠1 − ∠0) , |ψ0|

)
with the

Cartesian coordinates (x, y, z) of the hypersphere S2
(√
P
)
⊂ R

3 with z > 0 and radius:

√
x2 + y2 + z2 =

√
|ψ0|2 + |ψ1|2 =

√
P, (12)

see Supplementary Figure 4a. Hence, Supplementary Equation 10 can be rewritten as:

ψ = zê0 + (x+ iy) ê1. (13)

Here, note that ê0 ≡ ẑ and ê1 ≡ x̂. Moving from Cartesian to spherical coordinates(√
P, θ, ϕ

)
via the transformations:

x =
√
P sin θ cosϕ, (14)

y =
√
P sin θ sinϕ, (15)

z =
√
P cos θ, (16)

the anbit can equivalently be expressed as:

ψ =
√
P
(
cos θê0 + eiϕ sin θê1

)
, (17)

with θ ∈ [0, π/2] and ϕ ∈ [0, 2π).

2. In order to extend the geometrical representation of ψ to the whole sphere (i.e. including
the points with z < 0), we should perform the coordinate transformation θ′ := 2θ,
which maps the Cartesian coordinates (x, y, z) into the coordinates (x′, y′, z′) depicted
in Supplementary Figure 4b. Hence, Supplementary Equation 17 becomes:

ψ =
√
P
(
cos

θ

2

′

ê0 + eiϕ sin
θ

2

′

ê1

)
, (18)

with θ′ ∈ [0, π] and ϕ ∈ [0, 2π). However, note that a coordinate transformation cannot
perform a geometrical transformation on its own.
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3. In order to transform S2
(√
P
)
⊂ R

3 into S3
(√
P
)
⊂ C

2, we must carry out the relabelling
θ′ → θ, which is equivalent to reinterpret the coordinates (x′, y′, z′) as the original
Cartesian coordinates (x, y, z). As a result, ê1 now appears located at the south pole of
the new sphere: the GBS (Supplementary Figure 4c). Finally, applying this relabelling
to Supplementary Equation 18, we obtain the sought Supplementary Equation 11.

Supplementary Figure 4. Geometrical construction of the generalised Bloch sphere (GBS) to rep-
resent an anbit with 3 effective degrees of freedom (Supplementary Equation 11). a,b Transformation
of the hypersphere S2

(√
P
)
⊂ R

3 into c the hypersphere S3
(√
P
)
⊂ C

2, the GBS.

Final remark: Dirac’s notation. As seen from the GBS, it is clear the mathematical
similitude between an anbit and a quantum bit (qubit), but with the basic differences discussed
in the paper. In this sense and to be coherent with the main text at the end of subsection
“Unit of information: the analog bit”, let us introduce at this point the use of Dirac’s notation
from now on. Therefore, let us recast the anbit as

∣∣ψ
〉
= ψ0

∣∣0
〉
+ ψ1

∣∣1
〉

by performing the
identifications ψ ≡

∣∣ψ
〉
, ê0 ≡

∣∣0
〉

and ê1 ≡
∣∣1
〉
. As we will see through the next sections,

Dirac’s notation will allow us to simplify the mathematical framework of APC.

1.4 Anbit amplitudes: component isomorphism

Consider the single-anbit vector space E1 = span(B1), where B1 =
{∣∣u
〉
,
∣∣w
〉}

is a vector
basis (that may be the canonical orthonormal basis

{∣∣0
〉
,
∣∣1
〉}

or a different basis). For any
anbit

∣∣ψ
〉
∈ E1, ∃

(
ψu, ψw

)
∈ C

2 (referred to as the anbit amplitudes) satisfying that
∣∣ψ
〉
=

ψu

∣∣u
〉
+ ψw

∣∣w
〉
. Using an algebraic terminology, ψu and ψw are specifically the components

of the vector
∣∣ψ
〉

associated to the basis B1, which can be calculated using the inner product
of E1 as follows [9]:

ψu = proj
span

{
∣∣u
〉} (∣∣ψ

〉)
=

〈
u|ψ
〉

〈
u|u
〉 , ψw = proj

span
{
∣∣w
〉} (∣∣ψ

〉)
=

〈
w|ψ

〉
〈
w|w

〉 . (19)

In this context, a useful analytical tool that allows us to provide a matrix nature to the concept
of component is the component isomorphism, defined as the mapping [·]B1

: E1 →M2×1 (C):

[∣∣ψ
〉]

B1
:=

(
ψu

ψw

)
. (20)
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In particular, this mapping is employed in APC to describe the input-output relation of the
anbit gates using matrices instead of linear operators (see the description of equation 1 in the
main text and Supplementary Note 2 on p. 36).

1.5 Multiple anbits: tensor product vs Cartesian product

In order to operate with multiple anbits, we must construct a vector space “higher” than the
single-anbit vector space E1. This can be done by using the tensor product or the Cartesian
product. In this subsection, we detail the main properties of both operations within the
context of APC.

Tensor product. The definition and mathematical properties of the tensor product can
be found rigorously detailed in Ch. 2 of ref. [10]. Here, we will only highlight the following
remarks:

• The notation employed in APC will be the same as the notation used in quantum
computing (QC) to describe a system with multiple qubits. The n-anbit vector space
En, constructed from E1 using the tensor product, is denoted as:

En = E1 ⊗ E1 ⊗ . . .⊗ E1︸ ︷︷ ︸
n−1 times

≡ E
⊗(n−1)
1 . (21)

• A vector belonging to En (E1) will usually be denoted by using an uppercase (lowercase)
Greek letter, e.g.,

∣∣Ψ
〉
=
∣∣ψ1

〉
⊗
∣∣ψ2

〉
⊗ . . . ⊗

∣∣ψn

〉
, with

∣∣Ψ
〉
∈ En and

∣∣ψk

〉
∈ E1,

∀k ∈ {1, . . . , n}. Here, we can use a more economical notation by describing the above
expression of the form

∣∣Ψ
〉
=
∣∣ψ1, ψ2, . . . , ψn

〉
.

• The dimension of such a vector space is dim
(
En

)
= dim

(
E1

)n
.

• The scalar-vector product is (λ ∈ C,
∣∣Ψ
〉
∈ En):

λ
∣∣Ψ
〉
= λ

∣∣ψ1

〉
⊗
∣∣ψ2

〉
⊗ . . .⊗

∣∣ψn

〉

=
∣∣ψ1

〉
⊗ λ

∣∣ψ2

〉
⊗ . . .⊗

∣∣ψn

〉

=
∣∣ψ1

〉
⊗
∣∣ψ2

〉
⊗ . . .⊗ λ

∣∣ψn

〉
. (22)

• The null vector of En is constructed by applying n − 1 times the tensor product to the

null vector
∣∣0
〉
:= 0

∣∣0
〉
+ 0
∣∣1
〉

of E1:
∣∣0
〉⊗(n−1)

. For the sake of simplicity, we will also
denote the null vector of En as

∣∣0
〉

and the context should avoid the confusion.

• The dual space of E1 is L
(
E1,C

)
: the set of homomorphisms

〈
ϕ
∣∣ (described by a “bra”)

that transform an anbit (described by a “ket”)
∣∣ψ
〉
∈ E1 into the complex number

〈
ϕ|ψ

〉

by using the standard complex inner product of E1. Along this line, note that the

dual space of En = E
⊗(n−1)
1 is L

(
E

⊗(n−1)
1 ,C

)
= L

(
E1,C

)⊗(n−1)
, that is, the set of

homomorphisms
〈
Φ
∣∣ constructed from the tensor product of n different homomorphisms〈

ϕ1

∣∣,
〈
ϕ2

∣∣, . . . ,
〈
ϕn

∣∣ belonging to L
(
E1,C

)
:
〈
Φ
∣∣ =

〈
ϕ1

∣∣⊗
〈
ϕ2

∣∣⊗ . . .⊗
〈
ϕn

∣∣. Here, we can
use a more economical notation rewriting the above expression as

〈
Φ
∣∣ =

〈
ϕ1, ϕ2, . . . , ϕn

∣∣.
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• The inner product of En is defined by combining the inner product of E1 along with the
multiplication operation of C. As an example, the inner product of

∣∣Ψ
〉
=
∣∣ψ1

〉
⊗
∣∣ψ2

〉

and
∣∣Φ
〉
=
∣∣ϕ1

〉
⊗
∣∣ϕ2

〉
belonging to E2 is defined as:

〈
Ψ|Φ

〉
:=
〈
ψ1|ϕ1

〉
·
〈
ψ2|ϕ2

〉
. (23)

• The vector space En is a Hilbert space.

• The canonical vector basis of En is built by applying the tensor product to the canonical
vector basis of E1. As an example, the canonical vector basis of E2 is:

B2 =
{∣∣k
〉
⊗
∣∣l
〉}

k,l∈{0,1}
=
{∣∣0, 0

〉
,
∣∣0, 1

〉
,
∣∣1, 0

〉
,
∣∣1, 1

〉}
. (24)

Using the inner product given by Supplementary Equation 23, it follows that B2 is
orthonormal.

• The components of a given ket
∣∣ψ1, ψ2, . . . , ψn

〉
belonging to En with vector basis Bn can

be calculated from the components (or anbit amplitudes) of the individuals kets
∣∣ψ1,...,n

〉

belonging to E1 with vector basis B1 by using the Kronecker product ⊗K:

[∣∣ψ1, ψ2, . . . , ψn

〉]
Bn

=
[∣∣ψ1

〉]
B1
⊗K

[∣∣ψ2

〉]
B1
⊗K . . .⊗K

[∣∣ψn

〉]
B1
, (25)

where [·]Bn
and [·]B1

are the component isomorphisms associated to the bases Bn and
B1, respectively (see p. 31). Supplementary Equation 25 applies to any basis Bn and B1
(not necessarily being the canonical bases). For instance, consider two different anbits∣∣ψ
〉
= ψ0

∣∣0
〉
+ ψ1

∣∣1
〉

and
∣∣ϕ
〉
= ϕ0

∣∣0
〉
+ ϕ1

∣∣1
〉
. The tensor product is:

∣∣ψ
〉
⊗
∣∣ϕ
〉
=
(
ψ0

∣∣0
〉
+ ψ1

∣∣1
〉)
⊗
(
ϕ0

∣∣0
〉
+ ϕ1

∣∣1
〉)

= ψ0ϕ0

∣∣0, 0
〉
+ ψ0ϕ1

∣∣0, 1
〉
+ ψ1ϕ0

∣∣1, 0
〉
+ ψ1ϕ1

∣∣1, 1
〉
. (26)

Therefore, the components of
∣∣ψ
〉
⊗
∣∣ϕ
〉
∈ E2 with vector basis B2 given by Supplementary

Equation 24 can be calculated as:

[∣∣ψ
〉
⊗
∣∣ϕ
〉]

B2
=




ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1


 =

(
ψ0

ψ1

)
⊗K

(
ϕ0

ϕ1

)
≡
[∣∣ψ
〉]

B1
⊗K

[∣∣ϕ
〉]

B1
. (27)

Supplementary Equation 27 can be applied, e.g., to obtain the anbit amplitudes associ-
ated to the optical inputs depicted in Fig. 4c of the paper.

• The tensor product is non-commutative. The 1:1 correspondence between ⊗ and ⊗K

(emerged from the component isomorphism) allows us to infer that ⊗ inherits the non-
commutative property from ⊗K. Using the above example, it is straightforward to verify
that

∣∣ψ
〉
⊗
∣∣ϕ
〉
6=
∣∣ϕ
〉
⊗
∣∣ψ
〉

(when
∣∣ψ
〉
6=
∣∣ϕ
〉
):

∣∣ψ
〉
⊗
∣∣ϕ
〉 1:1←→

[∣∣ψ
〉
⊗
∣∣ϕ
〉]

B2
=
[∣∣ψ
〉]

B1
⊗K

[∣∣ϕ
〉]

B1

6=
[∣∣ϕ
〉]

B1
⊗K

[∣∣ψ
〉]

B1
=
[∣∣ϕ
〉
⊗
∣∣ψ
〉]

B2

1:1←→
∣∣ϕ
〉
⊗
∣∣ψ
〉
.

(28)
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Cartesian product. The definition and mathematical properties of the Cartesian product
(equivalent to the direct sum when is applied to a finite number of vector spaces) are rigorously
detailed in refs. [9, 11]. Here, we will only highlight the following remarks:

• The n-anbit vector space En, constructed from E1 using the Cartesian product, is denoted
as:

En = E1 × E1 × . . .× E1︸ ︷︷ ︸
n−1 times

≡ E
×(n−1)
1 . (29)

• A vector belonging to En (E1) will usually be denoted by using an uppercase (lowercase)
Greek letter, e.g.,

∣∣Ψ
〉
=
∣∣ψ1

〉
×
∣∣ψ2

〉
× . . . ×

∣∣ψn

〉
, with

∣∣Ψ
〉
∈ En and

∣∣ψk

〉
∈ E1,

∀k ∈ {1, . . . , n}. Here, we can also use a classical notation by describing the above
expression via an n-tuple

∣∣Ψ
〉
=
(∣∣ψ1

〉
,
∣∣ψ2

〉
, . . . ,

∣∣ψn

〉)
.

• The dimension of such a vector space is dim
(
En

)
= n dim

(
E1

)
.

• The scalar-vector product is (λ ∈ C,
∣∣Ψ
〉
∈ En):

λ
∣∣Ψ
〉
= λ

∣∣ψ1

〉
× λ

∣∣ψ2

〉
× . . .× λ

∣∣ψn

〉
≡
(
λ
∣∣ψ1

〉
, λ
∣∣ψ2

〉
, . . . , λ

∣∣ψn

〉)
. (30)

• The null vector of En is constructed by applying n − 1 times the Cartesian product to

the null vector
∣∣0
〉

of E1:
∣∣0
〉×(n−1)

. For the sake of simplicity, we will also denote the
null vector of En with the ket

∣∣0
〉

and the context should avoid the confusion.

• The dual space of En = E
×(n−1)
1 is L

(
E

×(n−1)
1 ,C

)
= L

(
E1,C

)×(n−1)
, that is, the set

of homomorphisms
〈
Φ
∣∣ constructed from the Cartesian product of n different homo-

morphisms
〈
ϕ1

∣∣,
〈
ϕ2

∣∣, . . . ,
〈
ϕn

∣∣ belonging to L
(
E1,C

)
:
〈
Φ
∣∣ =

〈
ϕ1

∣∣×
〈
ϕ2

∣∣× . . .×
〈
ϕn

∣∣ ≡(〈
ϕ1

∣∣,
〈
ϕ2

∣∣, . . . ,
〈
ϕn

∣∣).

• The inner product of En is defined by combining the inner product of E1 along with the
addition operation of C. As an example, the inner product of

∣∣Ψ
〉
=
∣∣ψ1

〉
×
∣∣ψ2

〉
and∣∣Φ

〉
=
∣∣ϕ1

〉
×
∣∣ϕ2

〉
belonging to E2 is defined as:

〈
Ψ|Φ

〉
:=
〈
ψ1|ϕ1

〉
+
〈
ψ2|ϕ2

〉
. (31)

• The vector space En is a Hilbert space.

• The canonical vector basis of En is built by combining the canonical vector basis of E1

along with the null anbit of E1. As an illustrative example, the canonical vector basis of
E2 is found to be:

B2 =
{(∣∣0

〉
,
∣∣0
〉)
,
(∣∣1
〉
,
∣∣0
〉)
,
(∣∣0
〉
,
∣∣0
〉)
,
(∣∣0
〉
,
∣∣1
〉)}

. (32)

Using the inner product given by Supplementary Equation 31, it follows that B2 is
orthonormal.
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• The components of a given ket
∣∣ψ1

〉
×
∣∣ψ2

〉
× . . .×

∣∣ψn

〉
belonging to En with vector basis

Bn can be calculated from the components (or anbit amplitudes) of the individuals kets∣∣ψ1,...,n

〉
belonging to E1 with vector basis B1 as follows:

[∣∣ψ1

〉
×
∣∣ψ2

〉
× . . .×

∣∣ψn

〉]
Bn

=




[∣∣ψ1

〉]
B1[∣∣ψ2

〉]
B1

· · ·[∣∣ψn

〉]
B1


 , (33)

where [·]Bn
and [·]B1

are the component isomorphisms associated to the bases Bn and B1,
respectively. Supplementary Equation 33 applies to any basis Bn and B1 (not necessarily
being the canonical bases). For instance, consider two different anbits

∣∣ψ
〉
= ψ0

∣∣0
〉
+

ψ1

∣∣1
〉

and
∣∣ϕ
〉
= ϕ0

∣∣0
〉
+ ϕ1

∣∣1
〉
. The Cartesian product is:

∣∣ψ
〉
×
∣∣ϕ
〉
≡
(∣∣ψ
〉
,
∣∣ϕ
〉)

=
( 1∑

k=0

ψk

∣∣k
〉
,

1∑

l=0

ϕl

∣∣l
〉)

=
1∑

k=0

ψk

(∣∣k
〉
,
∣∣0
〉)

+
1∑

l=0

ϕl

(∣∣0
〉
,
∣∣l
〉)
. (34)

Therefore, the components of
∣∣ψ
〉
×
∣∣ϕ
〉
∈ E2 with vector basis B2 given by Supplementary

Equation 32 can be calculated as:

[∣∣ψ
〉
×
∣∣ϕ
〉]

B2
=




ψ0

ψ1

ϕ0

ϕ1


 ≡

( [∣∣ψ
〉]

B1[∣∣ϕ
〉]

B1

)
. (35)

Supplementary Equation 35 can be applied, e.g., to obtain the anbit amplitudes associ-
ated to the optical inputs shown in Fig. 5a of the paper.

• The Cartesian product is non-commutative:
∣∣ψ
〉
×
∣∣ϕ
〉
6=
∣∣ϕ
〉
×
∣∣ψ
〉

(when
∣∣ψ
〉
6=
∣∣ϕ
〉
).

Final remarks. Consider two different anbits
∣∣ψ
〉
= ψ0

∣∣0
〉
+ψ1

∣∣1
〉

and
∣∣ϕ
〉
= ϕ0

∣∣0
〉
+ϕ1

∣∣1
〉
.

It is worthy to note that the tensor product mixes the information encoded by the anbit
amplitudes (see Supplementary Equation 27). In contrast, the Cartesian product preserves
this information (see Supplementary Equation 35) allowing us to independently transform the
anbit amplitudes ψ0, ψ1, ϕ0 and ϕ1 in a multi-anbit gate (e.g. the fan-in gate, see Fig. 5a of
the paper).

On the other hand, as commented in the main text, there are some specific multi-anbit
gates (such as the fan-in and fan-out gates) that exhibit a linear (nonlinear) nature when using
the Cartesian (tensor) product to construct them, see Supplementary Note 3 on p. 50 for more
details.
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Supplementary Note 2: combinational design

In this section, we include additional information about the fundamental pieces of combina-
tional APC architectures: single-anbit linear gates and controlled gates.

2.1 General properties of single-anbit linear gates

A single-anbit linear gate is described by a linear operator (or endomorphism) F̂ : E1 → E1

carrying out a transformation between two different anbits: the input anbit
∣∣ψ
〉
= ψ0

∣∣0
〉
+ψ1

∣∣1
〉

and the output anbit
∣∣ϕ
〉
= ϕ0

∣∣0
〉
+ ϕ1

∣∣1
〉
. In the next lines, we include supplementary notes

about the general properties of F̂ reported in the main text.

Matrix representation. Consider the canonical (orthonormal) vector basis B1 = {|0〉 , |1〉}
of E1. Using the fundamentals of linear algebra [12], it is well-known that any linear mapping
of E1 has associated the following (and unique) matrix representation:

F =MB1
B1

(
F̂
)
=
( [

F̂
∣∣0
〉]

B1

[
F̂
∣∣1
〉]

B1

)
, (36)

where [·]B1
is the component isomorphism detailed on p. 31. Using Supplementary Equation 19

to calculate the components of F̂ |0〉 and F̂ |1〉 associated to the basis B1, we find that:

[
F̂
∣∣0
〉]

B1
=

( 〈
0|F̂|0

〉
〈
1|F̂|0

〉
)
,

[
F̂
∣∣1
〉]

B1
=

( 〈
0|F̂|1

〉
〈
1|F̂|1

〉
)
. (37)

Combining Supplementary Equations 36 and 37, we obtain equation 1 of the paper, reproduced
here for clarity:

F =

( 〈
0|F̂|0

〉 〈
0|F̂|1

〉
〈
1|F̂|0

〉 〈
1|F̂|1

〉
)
. (38)

Moreover, applying the isomorphism [·]B1
to the input-output relation

∣∣ϕ
〉
= F̂

∣∣ψ
〉
, we find

that
[∣∣ϕ
〉]

B1
=
[
F̂
∣∣ψ
〉]

B1
where:

[
F̂
∣∣ψ
〉]

B1
=

( 〈
0|F̂|ψ

〉
〈
1|F̂|ψ

〉
)

=

(
ψ0

〈
0|F̂|0

〉
+ ψ1

〈
0|F̂|1

〉

ψ0

〈
1|F̂|0

〉
+ ψ1

〈
1|F̂|1

〉
)

= F

(
ψ0

ψ1

)
. (39)

Hence,
∣∣ϕ
〉
= F̂

∣∣ψ
〉

can equivalently be expressed via the matrix relation
[∣∣ϕ
〉]

B1
= F

[∣∣ψ
〉]

B1
,

with
[∣∣ϕ
〉]

B1
=
(
ϕ0 ϕ1

)T
and

[∣∣ψ
〉]

B1
=
(
ψ0 ψ1

)T
(T denotes the transpose matrix).

As commented above on p. 31, the component isomorphism allows us to describe the input-
output relation of the anbit gates using matrices instead of linear operators.

Ket-bra representation. Keeping in mind that MB1
B1

(·) is an isomorphism [12], it should
be noted that we can always recover the input from the output in Supplementary Equation 36.
In this vein, the linear operator F̂ can be calculated from the matrix F as follows:

F̂ =
∑

n,m

Fnm

∣∣n
〉〈
m
∣∣, (40)
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where n,m ∈ {0, 1} and Fnm is the entry of F located at the (n+ 1)-th row and (m+ 1)-th
column. Supplementary Equation 40 will be referred to as the ket-bra representation of the
gate. This equation may be derived from Supplementary Equation 38, which can be recast of
the form Fnm =

〈
n|F̂|m

〉
. Using this expression, we infer that Fnm

∣∣n
〉〈
m
∣∣ =

∣∣n
〉〈
n|F̂|m

〉〈
m
∣∣.

Applying the double summation
∑

n,m at both sides and taking into account that the vector

basis B1 satisfies the closure relation
∑

n

∣∣n
〉〈
n| = 1̂ (where 1̂ is the identity operator) [10],

then it directly follows Supplementary Equation 40.

Geometric representation. Using differential measurement, the input anbit
∣∣ψ
〉

and the
output anbit

∣∣ϕ
〉

can be geometrically represented in the GBS as two different points (Fig. 3a).

If the anbit transformation F̂ is a U-gate, both points are connected by a trajectory describing
a rotation of an angle α around an arbitrary unit vector n̂ (Fig. 3b). Such a trajectory preserves
the radius in the GBS. However, if F̂ is a G- or M-gate, there is no specific kind of trajectory
connecting both points. This can be inferred from the singular value decomposition (SVD),
which factorizes F as a function of two U-gates (U1 and U2) along with a 2 × 2 diagonal
matrix D with non-negative real entries [9, 12, 13]: F = U2DU1. The matrices U1 and U2 can
be respectively described by two different rotations of angles α1 and α2 around two arbitrary
unit vectors n̂1 and n̂2: U1 = eiδ1Rn̂1

(α1) and U2 = eiδ2Rn̂1
(α2) (the global phases δ1 and δ2

are not observable in the GBS). The diagonal matrix:

D =

(
d1 0
0 d2

)
, (41)

with d1 ≥ d2 ≥ 0, modifies |ψ0| and |ψ1| but, unfortunately, this parametric matrix cannot be
associated to a specific class of trajectory. As an example, taking d2 = 0, D projects |ψ〉 onto
the positive z-axis of the GBS annihilating the anbit amplitude ψ1. However, if d1 = d2 = 1,
then D preserves the location of |ψ〉. Consequently, a G- or M-gate cannot be represented by
a universal kind of trajectory. Each numerical case leads to a different trajectory in the GBS.

Lorentz reciprocity and forward-backward (FB) symmetry. By definition, an optical
circuit is said to be reciprocal if and only if the Lorentz reciprocity theorem is satisfied in such
a system [4, 14, 15]. By definition, an optical circuit is said to be symmetric (or, equivalently,
it is said that preserves the FB symmetry) if and only if the system has the same transfer
matrices associated to the forward and backward light propagation directions [4]. Specifically,
the reciprocity and FB symmetry of an optical circuit may be theoretically analysed via the
scattering and transfer matrices [4, 16].

In the following, let us discuss some remarks and logical implications between the F matrix
of a single-anbit linear gate and the scattering and transfer matrices associated with an optical
implementation of such a gate (for the sake of clarity, the reader should know the definition
and basic properties of the scattering matrix (S), the forward and backward transfer matrices
(Tf , Tb), and the reduced forward and backward transfer matrices (T̃f , T̃b) of an optical circuit,
see Ch. 2 of ref. [4] for more details):

1. The Lorentz reciprocity and the FB symmetry are not properties of a gate. These are
optical properties exclusively associated with a specific PIP implementation of a gate.
Therefore, a gate could be implemented by different PIP circuits performing the same
F matrix transformation, but exhibiting opposite optical properties.
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2. An optical circuit preserving (breaking) the FB symmetry will induce the same (a dif-
ferent) anbit transformation in each propagation direction.

3. If an optical circuit of a gate preserves the FB symmetry (Tf = Tb), then the circuit is
reciprocal (S = ST ). The converse is not true [4, 15].

4. The scattering matrix of a 2× 2 non-reflective optical system is found to be [4]:

S =

(
0 T̃b
T̃f 0

)
∈M4 (C) , (42)

with T̃f , T̃b ∈ M2 (C). Assuming that light reflection can usually be neglected in a PIP
circuit [4, 17], we will consider that the ideal optical implementation of a gate is non-
reflective. Hence, the scattering matrix of any optical implementation of a gate can
ideally be assumed of the form:

S =

(
0 T̃b
F 0

)
, (43)

with T̃f ≡ F . The form of the matrix T̃b directly depends on the specific optical archi-
tecture of the gate.

5. If the circuit of a gate is reciprocal, we know that S = ST [4]. Accordingly, T̃b ≡ F T

and the scattering matrix becomes:

S =

(
0 F T

F 0

)
. (44)

6. If the circuit of a gate is reciprocal and the gate satisfies the condition F = F T , then the
circuit preserves the FB symmetry (T̃f = T̃b ≡ F ) and the scattering matrix is reduced
to:

S =

(
0 F

F 0

)
. (45)

Using the contrapositive statement, if the circuit of a gate breaks the FB symmetry
(T̃f 6= T̃b), then it follows that the Lorentz reciprocity is broken or the gate is described
by an asymmetric matrix (F 6= F T ). Both situations can take place simultaneously.

7. There is no logical implication between the concepts of circuital reciprocity and gate
reversibility. As commented above, the reciprocity is a functional property of an optical
implementation of a gate, while the reversibility is a mathematical property of the en-
domorphism defining the gate (discussed in the main text). In the same vein, there is
no logical implication between the concepts of FB symmetry and gate reversibility.
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2.2 Equivalent circuit architectures of single-anbit linear gates

U-gates. Equivalent optical implementations of a single-anbit U-gate can be proposed by
selecting different rotation vectors in Euler’s rotation theorem to factorize the 2× 2 universal
unitary matrix given by equation 2 of the paper [18]. For instance, instead of performing
the factorization U = eiδRẑ (α3)Rx̂ (α2)Rẑ (α1), whose optical implementation is shown in
Fig. 3b, we can select the unit vector ŷ in the second rotation:

U = eiδRẑ (α3)Rŷ (α2)Rẑ (α1) = eiδ


 cos α2

2 e
−i

(

α3+α1
2

)

− sin α2
2 e

−i
(

α3−α1
2

)

sin α2
2 e

i
(

α3−α1
2

)

cos α2
2 e

i
(

α3+α1
2

)


 . (46)

Supplementary Figure 5 shows the 2 × 2 optical system whose (reduced) forward transfer
matrix T̃f is given by the above equation. In contrast to the architecture depicted in Fig. 3b,
which requires a tunable symmetric directional coupler (DIC), this scheme is based on fixed
couplers (50:50 beam splitters implemented via multi-mode interferometers (MMIs) or fixed
symmetric DICs). Although the fabrication of a fixed coupler is simpler than that of a tunable
coupler, the main drawback of this implementation of a U-gate is that it will approximately
require the double footprint than that of the circuit of Fig. 3b because of a twice number of
couplers must be integrated in this architecture.

Supplementary Figure 5. Optical circuit of a U-gate implementing the universal unitary matrix of
equation 2 of the paper via Euler’s factorization given by Supplementary Equation 46.

On the other hand, it is natural to wonder about the possibility of building a more compact
architecture of a U-gate (a 2×2 universal unitary system) than the scheme proposed in Fig. 3b
by using a different factorization from Euler’s rotation theorem. Remarkably, this question
has been recently studied in ref. [18] within the context of unitary signal PIP processors. As
reported in this reference, alternative 2×2 unitary factorization techniques can be found in the
mathematical literature (e.g. the cosine-sine decomposition), but all of them lead to optical
schemes of a 2× 2 universal unitary system integrating a higher number of basic devices than
in our proposal.

G-gates. An optical implementation of a single-anbit G-gate (different from but equivalent
to the architecture depicted in Fig. 3c of the paper, based on the SVD) can be found by using
Mostow’s decomposition [19, 20]. This theorem establishes that a non-singular matrix G can
be factorized as a function of a unitary matrix U , a real anti-symmetric matrix A (A = −AT )
and a real symmetric matrix B (B = BT ) following the expression:
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G = UeiAeB. (47)

The main handicap of Mostow’s decomposition is that the exponential matrices cannot be
directly implemented by employing mainstream PIP devices. In order to unveil the optical
architecture of Supplementary Equation 47, it should be noted that E1 = eiA and E2 = eB

are Hermitian (but non-unitary) matrices:

E†
1 =

(
eiA
)†

= e−iA†
= e−iAT

= eiA = E1, (48)

E†
2 =

(
eB
)†

= eB
†
= eB

T

= eB = E2, (49)

with E†
1E1 = E2

1 = ei2A 6= I and E†
2E2 = E2

2 = e2B 6= I († denotes the conjugate transpose
matrix). Therefore, E1 and E2 can be factorized by using the spectral decomposition as
E1 = U1Λ1U

−1
1 and E2 = U2Λ2U

−1
2 , where U1,2 are matrices built from linearly independent

eigenvectors of E1,2 and Λ1,2 are diagonal matrices whose entries are the corresponding (real)
eigenvalues [9,12]. Moreover, since B1 = {|0〉 , |1〉} is an orthonormal basis, then it follows that

U1,2 are unitary matrices (U−1
1,2 = U †

1,2). Hence, Supplementary Equation 47 can be recast as:

G =
(
UU1

)
Λ1

(
U †
1U2

)
Λ2U

†
2 . (50)

As seen, we have factorized G as a function of three unitary matrices UU1, U
†
1U2, U

†
2 and two

diagonal matrices Λ1, Λ2. Interestingly, this factorization is implementable using basic PIP
devices, see Supplementary Figure 6.

Supplementary Figure 6. Optical circuit of a G-gate based on Mostow’s factorization.

An additional remark about this architecture should be discussed. While the first diagonal
matrix of the circuit (Λ2) may have positive and negative real entries (the negative sign is
implemented by phase shifters (PSs) of π rad that can alternatively be implemented by the
PSs of the final Rẑ rotation in the first U-gate), the second diagonal matrix (Λ1) has non-
negative real entries.

For completeness, let us demonstrate the non-negative nature of the entries of Λ1. Since
A is real anti-symmetric, then it follows that A must be of the form:

A =

(
0 a
−a 0

)
, (51)
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with a ∈ R. The (non-degenerate) eigenvalues of A are found to be µ1,2 = ±ia. Here,
since the geometric and algebraic multiplicity are the same, A is diagonalizable. This implies
that A can be factorized by using the spectral decomposition. Hence, A = U1D1U

−1
1 with

D1 = diag (µ1, µ2) and:

eiA = eiU1D1U
−1
1 = U1e

iD1U−1
1 ≡ U1Λ1U

−1
1 , (52)

where the eigenvalues of eiA, which are the entries of Λ1 = eiD1 , are found to be:

λ1,2 = eiµ1,2 = e∓a > 0. (53)

M-gates. A single-anbit M-gate is described by a complex matrix belonging to M2 (C):

M =

(
m11 m12

m21 m22

)
. (54)

Remarkably, M2 (C) is the complex Lie algebra gl (2,C) [7,21], with vector basis composed by
the Pauli matrices {σk}3k=0:

σk :=

(
δk0 + δk3 δk1 − iδk2
δk1 + iδk2 δk0 − δk3

)
, (55)

where δkl is the Kronecker delta (δkl = 1 with k = l and δkl = 0 with k 6= l). This implies
that any M-gate can be described as a linear combination of the Pauli matrices (see p. 427 of
ref. [10]):

M =
3∑

k=0

αkσk, (56)

where α0 = (m11+m22)/2, α1 = (m12+m21)/2, α2 = i(m12−m21)/2 and α3 = (m11−m22)/2.
Consequently, an optical circuit implementing Supplementary Equation 56 will give rise to an
equivalent scheme to the architecture of an M-gate depicted in Fig. 3c of the paper, based on
the SVD.

To this end, let us express the Pauli matrices as a function of the rotation matrices of the
Bloch sphere (which can be implemented via PIP technology because are unitary matrices [18]):

σ0 = I, σ1 = iRx̂ (π) , σ2 = iRŷ (π) , σ3 = iRẑ (π) . (57)

In this fashion, Supplementary Equation 56 becomes:

M = α0I + iα1Rx̂ (π) + iα2Rŷ (π) + iα3Rẑ (π) . (58)

The optical implementation of the above equation using PIP technology only requires (see
Supplementary Figure 7): (i) the minimal circuit architecture (MCA) of the U-gates to gen-
erate the rotation matrices (see Fig. 3b of the paper), (ii) PSs and tunable optical attenuators
and amplifiers to generate the terms α0 and iα1,2,3, and (iii) fan-in and fan-out gates to obtain
the linear combination of all terms (see Supplementary Note 3 for more details about these
multi-anbit gates). As seen, this structure is more complex than the architecture of an M-gate
based on the SVD (Fig. 3c) given that it involves a higher number of basic devices, requires
ancilla anbits and generates gargabe anbits.
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Supplementary Figure 7. Optical circuit of an M-gate based on the factorization described by
Supplementary Equation 58. The gates fan-in (FI) and fan-out (FO) are described in Fig. 5a of the
main text and in Supplementary Note 3, see p. 49.

2.3 Controlled gates

In any computation theory, a controlled gate is an operation of multiple units of information
given that the goal is to perform a transformation on the target units of information (e.g. the
target anbits,

∣∣t
〉
) depending on the value of the control units of information (e.g. the control

anbits,
∣∣c
〉
).

In APC, the definition of a multi-anbit gate (in this case, a controlled gate) will depend
on the kind of operation employed to describe the multiple input and output anbits. As
commented in the main text, using the tensor product to describe

∣∣t
〉

and
∣∣c
〉
, the mathematical

framework of a controlled anbit gate can be directly extrapolated from a controlled quantum
gate (but differing in some fundamental aspects).

Here, we develop in detail the theory of such a kind of gates within the context of APC
highlighting the main differences with QC.

2.3.1 Single control anbit

Definition and formalism. Let us start by considering a single-anbit linear gate (a U-,
G-, or M-gate) performing a transformation F̂ on an input anbit

∣∣t
〉
: the target anbit. The

controlled version of the F̂-gate (termed as controlled-F̂ gate) with a single control anbit∣∣c
〉
∈
{∣∣0
〉
,
∣∣1
〉}

is a linear operator F̂C defined via the tensor product as:

F̂C := 1̂⊗ F̂c, (59)

which transforms the input
∣∣c, t
〉

into the output:

F̂C

∣∣c, t
〉
=
(
1̂⊗ F̂c

)∣∣c, t
〉
=
∣∣c
〉
⊗ F̂c

∣∣t
〉
. (60)
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The transformation F̂ is applied to
∣∣t
〉

when
∣∣c
〉
=
∣∣1
〉

or, otherwise,
∣∣t
〉

remains invariant at

the output. Figure 4a of the paper shows the symbolic representation of F̂C, the same as that
of a controlled quantum gate for the sake of simplicity. However, in contrast to QC, F̂C will
be a non-unitary operation when F̂F̂† 6= 1̂, that is, when F̂ is a G- or M-gate (see below the
algebraic structure in properties).

In any case, the mathematical formalism of a controlled anbit gate is the same as that of
a controlled quantum gate. Since we work with two input and output anbits, the underlying
Hilbert space is E2 = E1⊗E1 and the canonical (orthonormal) basis is given by Supplementary
Equation 24, reproduced here for clarity:

B2 =
{∣∣k
〉
⊗
∣∣l
〉}

k,l∈{0,1}
=
{∣∣0, 0

〉
,
∣∣0, 1

〉
,
∣∣1, 0

〉
,
∣∣1, 1

〉}
. (61)

Hence, the matrix representation of F̂C associated to B2 is:

FC =MB2
B2

(
F̂C

)
=
(
· · ·

[
F̂C

∣∣k, l
〉]

B2
· · ·

)
=

(
I 0

0 F

)
, (62)

where FC ∈M4 (C), I is the 2×2 identity matrix and F ∈M2 (C) is the matrix representation
of F̂ associated to the canonical basis B1 = {|0〉 , |1〉} of E1, see Supplementary Equation 36.
Along this line, the ket-bra representation of F̂C can be calculated from the entries of FC as
follows (see previously p. 36, where the ket-bra representation of a gate is introduced):

F̂C =
∣∣0, 0

〉〈
0, 0
∣∣+
∣∣0, 1

〉〈
0, 1
∣∣

+ F00

∣∣1, 0
〉〈
1, 0
∣∣+ F01

∣∣1, 0
〉〈
1, 1
∣∣+ F10

∣∣1, 1
〉〈
1, 0
∣∣+ F11

∣∣1, 1
〉〈
1, 1
∣∣

=
∣∣0
〉〈
0
∣∣⊗
(∣∣0
〉〈
0
∣∣+
∣∣1
〉〈
1
∣∣)

+
∣∣1
〉〈
1
∣∣⊗
(
F00

∣∣0
〉〈
0
∣∣+ F01

∣∣0
〉〈
1
∣∣+ F10

∣∣1
〉〈
0
∣∣+ F11

∣∣1
〉〈
1
∣∣)

=
∣∣0
〉〈
0
∣∣⊗ 1̂ +

∣∣1
〉〈
1
∣∣⊗ F̂. (63)

In contrast to Supplementary Equation 59, the ket-bra representation of F̂C can be applied
to an arbitrary control anbit

∣∣c
〉
= c0

∣∣0
〉
+ c1

∣∣1
〉
/∈
{∣∣0
〉
,
∣∣1
〉}

. In such a scenario, using

Supplementary Equation 63, F̂C generates the output:

F̂C

∣∣c, t
〉
=
〈
0|c
〉∣∣0, t

〉
+
〈
1|c
〉∣∣1
〉
⊗ F̂

∣∣t
〉
= c0

∣∣0, t
〉
+ c1

∣∣1
〉
⊗ F̂

∣∣t
〉
. (64)

Note that this input-output relation is more general than Supplementary Equation 60.
On the other hand, although it is out of the scope of this work, it is worthy to note

that a controlled anbit gate can alternatively be defined by using the Cartesian product.
This possibility cannot be found in QC. Nevertheless, using the Cartesian product we cannot
extrapolate the mathematical framework of the controlled quantum gates to the controlled
anbit gates. In any case, for completeness, let us discuss this possibility. Here, the basic idea
is to define a controlled anbit gate as follows: the transformation F̂ is applied to

∣∣t
〉

when
∣∣c
〉

is the null anbit
∣∣0
〉

or, otherwise,
∣∣t
〉

remains invariant at the output. In this way, using this
definition and the canonical vector basis of E2 = E1 × E1, given by Supplementary Equation
32, it is straightforward to demonstrate that we obtain the same matrix representation of F̂C

as in Supplementary Equation 62.
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Properties. The controlled anbit gate illustrated in Fig. 4a of the main text exhibits the
following properties:

1. Endomorphism. The linear operator F̂C is an endomorphism of the Hilbert space E2 =
E1 ⊗ E1.

2. EDF transformation. If
∣∣c
〉
=
∣∣1
〉
, then F̂C modifies the EDFs of

∣∣t
〉

according to F̂ (a
U-, G-, or M-gate). For instance, assuming a target anbit with 3 EDFs, if

∣∣c
〉
=
∣∣1
〉

and

F̂ is a U-gate, then F̂C transforms these EDFs by rotating
∣∣t
〉

in the GBS.

3. Reversibility. From Supplementary Equation 62, it is direct to verify that:

det
(
FC

)
= det

(
F
)
. (65)

Consequently, the controlled-F̂ gate is reversible if and only if the F̂-gate is reversible
(det

(
F
)
6= 0). In such a case, F̂C is an automorphism. The inverse controlled gate

(inverse automorphism) is described by the linear operator F̂−1
C , whose matrix repres-

entation associated to B2 is:

F−1
C =MB2

B2

(
F̂−1
C

)
=
[
MB2

B2

(
F̂C

)]−1
=

(
I 0

0 F−1

)
. (66)

In addition, if the controlled-F̂ gate is reversible, then F̂C

(
B2
)
=
{
F̂C

∣∣k, l
〉}

k,l∈{0,1}
is a

vector basis of E2. Using the contrapositive statement, if F̂C

(
B2
)

is not a vector basis of

E2, then it follows that the controlled-F̂ gate is irreversible.

4. Matrix factorizations. Any matrix factorization of F can be directly applied to FC:

FC =

(
I 0

0 F

)
=

(
I 0

0
∏

k Fk

)
=
∏

k

(
I 0

0 Fk

)
. (67)

In other words, if the F̂-gate is equivalent to a set of F̂k-gates connected in series, then
the controlled-F̂ gate is equivalent to a set of controlled-F̂k gates connected in series.

5. Algebraic structure. The matrix FC inherits the algebraic structure of F : if F ∈ U(2),
then FC ∈ U(4); if F ∈ GL (2,C), then FC ∈ GL (4,C); if F ∈ gl (2,C), then
FC ∈ gl (4,C) (the definition of the Lie groups U(n) and GL (n,C), and the Lie al-
gebra gl (n,C) is detailed in ref. [21]). Note that in QC, FC can only belong to U(4).

6. Universality. A universal matrix of a controlled-F̂ gate must be able to describe all the
possible 4× 4 matrix transformations of the form given by Supplementary Equation 62.
Therefore, FC is a universal matrix of a controlled-F̂ gate if and only if F is a universal
matrix of a U-, G-, or M-gate.

7. PIP implementation. In QC, the theoretical strategies to design controlled gates are
focused on factorizing FC as a function of single-qubit gates and the controlled-NOT
(CNOT) gate [22]. Despite the fact that these schemes could be extrapolated to APC,
the implementation of a controlled anbit gate using PIP technology does not require
these intricate design strategies. Remarkably, APC has its own design strategies and

architectures, as demonstrated in Figs. 4b, 4c and 4d of the paper.
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2.3.2 Multiple control anbits

Definition and formalism. Consider a single-anbit F̂-gate (a U-, G-, or M-gate) operating
on a target anbit

∣∣t
〉
. The controlled-F̂ gate with n control anbits

∣∣c1,2,...,n
〉
∈
{∣∣0
〉
,
∣∣1
〉}

is a

linear operator F̂C defined as:

F̂C := 1̂⊗ . . .⊗ 1̂︸ ︷︷ ︸
n−1 times

⊗ F̂c1c2...cn = 1̂⊗(n−1) ⊗ F̂c1c2...cn , (68)

which transforms the input
∣∣c1, c2, . . . , cn

〉
⊗
∣∣t
〉

into the output:

F̂C

(∣∣c1, c2, . . . , cn
〉
⊗
∣∣t
〉)

=
∣∣c1, c2, . . . , cn

〉
⊗ F̂c1c2...cn

∣∣t
〉
. (69)

The transformation F̂ is applied to
∣∣t
〉

when
∣∣c1, c2, . . . , cn

〉
=
∣∣1, 1, . . . , 1

〉
or, otherwise,

∣∣t
〉

remains invariant at the output. Supplementary Figure 8 depicts the symbolic representation
of F̂C, the same as that of a multi-controlled quantum gate for simplicity. Nevertheless, in
contrast to QC, note that F̂C will be a non-unitary operation when F̂F̂† 6= 1̂, that is, when F̂
is a G- or M-gate.

Supplementary Figure 8. Functional scheme and symbolic representation of a controlled-F̂ gate
with n control anbits

∣∣c1,2,...,n
〉
∈
{∣∣0
〉
,
∣∣1
〉}

and a single target anbit
∣∣t
〉
. Inspired in a multi-

controlled quantum gate, the single-anbit operation F̂ (a U-, G-, or M-gate) is applied to
∣∣t
〉

when∣∣c1, c2, . . . , cn
〉
=
∣∣1, 1, . . . , 1

〉
or, otherwise,

∣∣t
〉

remains invariant at the output.

Now, the Hilbert space is En+1 = E
⊗(n)
1 and the canonical (orthonormal) vector basis is

found to be:
Bn+1 =

{∣∣k1
〉
⊗
∣∣k2
〉
⊗ . . .⊗

∣∣kn+1

〉}
k1,...,n+1∈{0,1}

. (70)

Hence, the matrix representation of F̂C associated to Bn+1 is:

FC =M
Bn+1

Bn+1

(
F̂C

)
=

(
I 0

0 F

)
, (71)

where FC ∈M2n+1 (C), I is the identity matrix of size
(
2n+1−2

)
×
(
2n+1−2

)
and F ∈M2 (C)

is the matrix representation of F̂ associated to the canonical basis B1 = {|0〉 , |1〉} of E1 (see
Supplementary Equation 38). Moreover, the ket-bra representation of F̂C can be calculated
from the entries of FC in the same way as in a controlled gate with a single control anbit (see
p. 43).
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Properties. A multi-controlled anbit gate has the same properties as a controlled gate
with a single control anbit, see p. 44. Nonetheless, now we work with endomorphisms F̂C

of the Hilbert space En+1 = E
⊗(n)
1 and matrices FC belonging to U

(
2n+1

)
, GL

(
2n+1,C

)
or

gl
(
2n+1,C

)
when F is a U-, G-, or M-gate, respectively.

In addition, it should be noted that the PIP implementation of a multi-controlled gate can
be designed as in a single-controlled gate: using an electro-optic or an all-optical architecture.
In the former case, the amplitudes of the control anbits

∣∣ck
〉
= ck,0

∣∣0
〉
+ck,1

∣∣1
〉

(k ∈ {1, . . . , n})
are encoded by the electrical control signals of the PIP platform and the amplitudes of the
target anbit

∣∣t
〉
= t0

∣∣0
〉
+ t1

∣∣1
〉

are encoded by a 2D optical wave (Supplementary Figure 9a).
In the latter case, the amplitudes of

∣∣c1, c2, . . . , cn
〉
⊗
∣∣t
〉

associated to the vector basis Bn+1

are encoded by optical waves (Supplementary Figure 9b). Here, the reduced forward transfer
matrix of the system must be FC. Therefore, we require to use 2n+1 − 2 waveguides to
implement the submatrix I of FC in combination with the MCA of the submatrix F (given
by Fig. 3b if F is a U-gate or Fig. 3c if F is a G- or M-gate).

Supplementary Figure 9. PIP implementation of a multi-controlled gate with n control anbits∣∣c1
〉
, . . . ,

∣∣cn
〉

and a single target anbit
∣∣t
〉
, whose functionality is shown in Supplementary Figure 8.

a Electro-optic design. The PIP circuit is the MCA of the single-anbit operation F̂ associated to
the target anbit (here we depict the MCA of an M-gate to cover the general case). The basic PIP
devices are controlled by electrical signals (blue lines) mapped with the amplitudes of the control
anbits

∣∣ck
〉
= ck,0

∣∣0
〉
+ ck,1

∣∣1
〉

(k ∈ {1, . . . , n}), e.g., via software [23]. The optical inputs encode the
amplitudes of

∣∣t
〉
= t0

∣∣0
〉
+ t1

∣∣1
〉

(black lines). b All-optical design. The optical inputs encode the
amplitudes of the tensor product

∣∣c1, c2, . . . , cn
〉
⊗
∣∣t
〉
, given by the matrix

[∣∣c1, c2, . . . , cn
〉
⊗
∣∣t
〉]

Bn+1
,

where [·]
Bn+1

is the component isomorphism (see p. 31). The whole structure implements the matrix
FC given by Supplementary Equation 71.

As seen, the all-optical architecture entails a higher footprint than that of the electro-optic
design, which only requires to establish a mapping between the control anbits and the electrical
control signals of the PIP circuit (e.g. via software [23]). In this fashion, the same MCAs as
those of the U-, G-, and M-gates (depicted in Fig. 3 of the paper) may be employed to perform
multi-controlled operations of each kind of gate via an electro-optic design.

A basic example. So far, we have developed the theory of the multi-controlled gates in
abstract terms. To clarify these concepts, let us include an illustrative example: the Toffoli
(or CCNOT) gate, a multi-controlled operation with 2 control anbits and 1 target anbit.
Specifically, the matrix of this gate is found to be:
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UCCN :=

(
I6×6 0

0 σx

)
=




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




, (72)

where:

σx :=

(
0 1
1 0

)
, (73)

is a Pauli matrix, a single-anbit U-gate termed as the NOT gate within the literature of
QC [22]. Therefore, the matrix F of Supplementary Equation 71 is the Pauli matrix σx in this
example. Furthermore, the ket-bra representation can be calculated from UCCN as:

ÛCCN =
∣∣0, 0, 0

〉〈
0, 0, 0

∣∣+
∣∣0, 0, 1

〉〈
0, 0, 1

∣∣+
∣∣0, 1, 0

〉〈
0, 1, 0

∣∣+
∣∣0, 1, 1

〉〈
0, 1, 1

∣∣
+
∣∣1, 0, 0

〉〈
1, 0, 0

∣∣+
∣∣1, 0, 1

〉〈
1, 0, 1

∣∣+
∣∣1, 1, 0

〉〈
1, 1, 1

∣∣+
∣∣1, 1, 1

〉〈
1, 1, 0

∣∣

=
∣∣0
〉〈
0
∣∣⊗ 1̂⊗ 1̂ +

∣∣1
〉〈
1
∣∣⊗
∣∣0
〉〈
0
∣∣⊗ 1̂ +

∣∣1
〉〈
1
∣∣⊗
∣∣1
〉〈
1
∣∣⊗ σ̂x, (74)

with σ̂x =
∣∣0
〉〈
1
∣∣+
∣∣1
〉〈
0
∣∣.

Supplementary Figure 10. PIP implementation of the Toffoli (or CCNOT) gate, a multi-controlled
anbit gate with 2 control anbits

∣∣c1
〉
,
∣∣c2
〉

and 1 target anbit
∣∣t
〉
. a Electro-optic design. The PIP cir-

cuit is the MCA of a U-gate since F ≡ σx is a 2× 2 unitary matrix. b All-optical design implementing
the matrix UCCN given by Supplementary Equation 72.

The PIP implementation of the CCNOT gate can be carried out via an electro-optic or
an all-optical design, see Supplementary Figure 10. Both architectures are the same as those
of Supplementary Figure 9, but restricted to the case of 2 control anbits and using the MCA
of a U-gate to induce the σx-matrix transformation on the amplitudes of

∣∣t
〉
. It is worth

mentioning that Supplementary Figure 10a is the same circuit as that of Fig. 4d of the
paper, but including an additional control anbit

∣∣c2
〉

in the electrical domain. This result
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demonstrates the possibility of scaling the controlled gates to the case of multiple control
anbits without requiring extra PIP devices in the optical circuits, a fundamental feature of
APC that cannot be found in optical QC.

Finally, in Supplementary Note 5, we report how to use the Toffoli gate to implement the
Boolean logic of digital computation in APC, see p. 65.
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Supplementary Note 3: sequential design

Here, we include additional information about the fundamental pieces required to construct
sequential APC architectures: the fan-in (FI) and fan-out (FO) gates. Furthermore, the
two sequential systems depicted in Fig. 5b and 5d of the main text are discussed in more
detail. Both examples will allow us to establish the theoretical strategies to analyse and
design sequential architectures in APC.

3.1 Fan-in and fan-out gates

In this subsection, we first study the definition and mathematical properties of the FI and
FO gates and, subsequently, we propose a common PIP implementation for both multi-anbit
operations.

3.1.1 Fan-in: anbit addition

Definition and formalism. Consider the single-anbit Hilbert space E1. Let us define the
FI operation (anbit addition) as the linear mapping ĜFI of E2 := E1 × E1 which transforms
the input

(∣∣ψ
〉
,
∣∣ϕ
〉)

into the output:

ĜFI

(∣∣ψ
〉
,
∣∣ϕ
〉
;n,m

)
:=
(
n
(∣∣ψ
〉
+
∣∣ϕ
〉)
,m
(∣∣ψ
〉
−
∣∣ϕ
〉))

, (75)

where n,m ∈ C − {0} are parameters of the operation (n = m = 1 will be assumed as the
default values and, in such a case, the parameters can be omitted on the left-hand side of
the above equation). Supplementary Figure 11 shows the functional scheme and symbolic
representation of the FI gate. In most sequential APC architectures, the second output anbit
m
(∣∣ψ
〉
−
∣∣ϕ
〉)

will be considered as a garbage anbit and only the first output anbit n
(∣∣ψ
〉
+
∣∣ϕ
〉)

will be utilised to build a feedback loop. Nevertheless, the aim of defining two output anbits
is that, in this way, we will be able to describe the FI gate with a square matrix, see below.

Supplementary Figure 11. Functional scheme and symbolic representation of the fan-in (FI) gate.
The values of the (complex) parameters n,m should be indicate, except for the case n = m = 1, which
are defined as the default values.

Taking into account that the FI gate is an operation of two input and output anbits, the
underlying Hilbert space is E2 and the canonical (orthonormal) basis is given by Supplementary
Equation 32, reproduced here for clarity:

B2 =
{(∣∣0

〉
,
∣∣0
〉)
,
(∣∣1
〉
,
∣∣0
〉)
,
(∣∣0
〉
,
∣∣0
〉)
,
(∣∣0
〉
,
∣∣1
〉)}

. (76)
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The matrix representation of ĜFI associated to B2 is:

GFI =MB2
B2

(
ĜFI

)

=
( [

ĜFI

(∣∣0
〉
,
∣∣0
〉)]

B2

[
ĜFI

(∣∣1
〉
,
∣∣0
〉)]

B2

[
ĜFI

(∣∣0
〉
,
∣∣0
〉)]

B2

[
ĜFI

(∣∣0
〉
,
∣∣1
〉)]

B2

)

=
( [(

n
∣∣0
〉
,m
∣∣0
〉)]

B2

[(
n
∣∣1
〉
,m
∣∣1
〉)]

B2

[(
n
∣∣0
〉
,−m

∣∣0
〉)]

B2

[(
n
∣∣1
〉
,−m

∣∣1
〉)]

B2

)

=

(
nI nI

mI −mI

)
. (77)

Thus, using the component isomorphism [·]B2
, Supplementary Equation 75 can be recast as:

[(
n
(∣∣ψ
〉
+
∣∣ϕ
〉)
,m
(∣∣ψ
〉
−
∣∣ϕ
〉))]

B2
= GFI

[(∣∣ψ
〉
,
∣∣ϕ
〉)]

B2
, (78)

leading to the following input-output matrix relation:



n (ψ0 + ϕ0)
n (ψ1 + ϕ1)
m (ψ0 − ϕ0)
m (ψ1 − ϕ1)


 =




n 0
0 n

n 0
0 n

m 0
0 m

−m 0
0 −m







ψ0

ψ1

ϕ0

ϕ1


 . (79)

Setting n = m = 1, the above expression describes the computational system depicted in
Fig. 5a of the paper.

As seen, defining the FI operation via the Cartesian product, we are able to: (i) work
with (square) matrices providing a linear nature to this gate, (ii) independently transform the
anbit amplitudes ψ0, ψ1, ϕ0 and ϕ1. Alternatively, we could define the FI gate via the tensor

product. Nonetheless, in such a scenario, it is worthy to highlight that this version of the FI
gate would have a nonlinear nature because we could not describe this multi-anbit operation
via a matrix. The proof of this statement can be done in three steps. Firstly, note that the
definition of the FI gate via the tensor product would be of the form:

ĜFI

∣∣ψ, ϕ
〉
:=
∣∣ψ + ϕ

〉
⊗
∣∣ψ − ϕ

〉
=
∑

k,l

(
ψk + ϕk

)(
ψl − ϕl

)∣∣k, l
〉
. (80)

Secondly, we should derive the “apparent” matrix representation of ĜFI associated to the
canonical basis B2 of E1 ⊗ E1 (given by Supplementary Equation 24):

GFI =MB2
B2

(
ĜFI

)
=
(
· · ·

[
ĜFI

∣∣k, l
〉]

B2
· · ·

)
=




0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0


 . (81)

Thirdly, we should compare the output generated by ĜFI with the output generated by GFI.
The operator ĜFI leads to the output described by Supplementary Equation 80, whose com-
ponents associated to B2 are:

[
ĜFI

∣∣ψ, ϕ
〉]

B2
=




(
ψ0 + ϕ0

)(
ψ0 − ϕ0

)
(
ψ0 + ϕ0

)(
ψ1 − ϕ1

)
(
ψ1 + ϕ1

)(
ψ0 − ϕ0

)
(
ψ1 + ϕ1

)(
ψ1 − ϕ1

)


 . (82)
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However, the matrix GFI gives rise to a different output:

GFI

[∣∣ψ, ϕ
〉]

B2
=




0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0







ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1


 =




0
−ψ0ϕ1

−ψ1ϕ0

0


 . (83)

Consequently, ĜFI has no matrix representation. This implies that the global output (Supple-
mentary Equation 82) is different from the linear superposition of the outputs generated by
each vector of the basis B2 (Supplementary Equation 83). In other words, ĜFI is a nonlinear
mapping of E1 ⊗ E1. For this reason, the FI gate is defined by using the Cartesian product as
indicated by Supplementary Equation 75.

Properties. The FI gate illustrated in Supplementary Figure 11 exhibits the following prop-
erties:

1. Automorphism. The linear operator ĜFI is an automorphism of the Hilbert space
E2 = E1 × E1, i.e., a bijective endomorphism given that the FI gate is reversible, as
demonstrated in property 2.

2. Reversibility. From Supplementary Equation 77, it follows that:

det
(
GFI

)
= 4n2m2 6= 0, (84)

that is, the FI gate is reversible.

3. Commutativity. The operation ĜFI holds the commutative property:

ĜFI

(∣∣ψ
〉
,
∣∣ϕ
〉
;n,m

)
= ĜFI

(∣∣ϕ
〉
,
∣∣ψ
〉
;n,−m

)
. (85)

The order of the input anbits can be commuted preserving the state of the output anbits,
provided that the sign of the second parameter is inverted.

4. FI-FO connection. The FO operation (defined below) of the anbit
∣∣ψ
〉

can be per-
formed by the FI gate setting

∣∣ϕ
〉
=
∣∣0
〉

and n,m ∈ R
+ in Supplementary Equation 75.

Moreover, a perfect cloning of
∣∣ψ
〉

will be carried out taking n = m = 1.

5. Algebraic structure. If |n|2 = |m|2 = 1/2, then GFI ∈ U(4) and FI is a 2-anbit U-gate.
Otherwise, GFI ∈ GL (4,C) and FI is a 2-anbit G-gate.

6. Universality and PIP implementation. A universal matrix of the FI gate is of the form
given by Supplementary Equation 77. A PIP implementation of such a matrix preserves
the universality if the values of the parameters n and m may be optically tuned. Along
this line, note that when n = m thenGFI = GT

FI and, therefore, if the circuit preserves the
Lorentz reciprocity, we may conclude that the circuit will also preserve the FB symmetry
(as inferred from comment 6 on page 38). Remarkably, the PIP implementation of the
FI gate depicted in Fig. 5a and Supplementary Figure 13 satisfies this property.
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3.1.2 Fan-out: anbit cloning

Definition and formalism. Consider the single-anbit Hilbert space E1. Let us define the
FO operation (anbit cloning) as the linear mapping M̂FO of E2 := E1 × E1 which transforms
the input

(∣∣ψ
〉
,
∣∣ϕ
〉)

into the output:

M̂FO

(∣∣ψ
〉
,
∣∣ϕ
〉
;n,m

)
:=
(
n
∣∣ψ
〉
,m
∣∣ψ
〉)
, (86)

where n,m ∈ R
+ are parameters of the operation (n = m = 1 will be assumed as the default

values and, in such a case, the parameters can be omitted on the left-hand side of the above
equation). Here, note that

∣∣ϕ
〉

is an ancilla anbit since we are only interested in cloning a
single input anbit (

∣∣ψ
〉
). Nonetheless, the aim of defining two input anbits is that, in this vein,

we will be able to describe the FO operation via a square matrix, see below. Supplementary
Figure 12 shows the functional scheme and symbolic representation of the FO gate.

Supplementary Figure 12. Functional scheme and symbolic representation of the fan-out (FO) gate.
The values of the (positive real) parameters n,m should be indicate, except for the case n = m = 1,
which are defined as the default values and give rise to a perfect cloning of the input anbit

∣∣ψ
〉
.

The goal of the FO gate is to introduce an operation in APC that allows us to duplicate
the state of an anbit with the same norm (perfect cloning, n = m = 1) or a different norm
(imperfect cloning, n 6= 1 or m 6= 1), but without introducing an additional phase. To this
end, the parameters n and m must be assumed positive real constants.

Bearing in mind that the FO gate is an operation of two input and output anbits, the
underlying Hilbert space is E2 and the canonical (orthonormal) basis is B2, given by Supple-
mentary Equation 76. In this scenario, the matrix representation of M̂FO associated to B2
is:

MFO =MB2
B2

(
M̂FO

)

=
( [

M̂FO

(∣∣0
〉
,
∣∣0
〉)]

B2

[
M̂FO

(∣∣1
〉
,
∣∣0
〉)]

B2

[
M̂FO

(∣∣0
〉
,
∣∣0
〉)]

B2

[
M̂FO

(∣∣0
〉
,
∣∣1
〉)]

B2

)

=
( [(

n
∣∣0
〉
,m
∣∣0
〉)]

B2

[(
n
∣∣1
〉
,m
∣∣1
〉)]

B2

[(∣∣0
〉
,
∣∣0
〉)]

B2

[(∣∣0
〉
,
∣∣0
〉)]

B2

)

=

(
nI 0

mI 0

)
. (87)

Hence, applying the component isomorphism [·]B2
to Supplementary Equation 86, the input-

output relation of the FO gate can be expressed by the matrix relation:




nψ0

nψ1

mψ0

mψ1


 =




n 0
0 n

0 0
0 0

m 0
0 m

0 0
0 0







ψ0

ψ1

ϕ0

ϕ1


 . (88)
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It should be noted that the third and fourth columns of MFO are found to be null as a direct
consequence that the FO gate must clone

∣∣ψ
〉

at the output for any ancilla anbit
∣∣ϕ
〉

at the
input. The main drawback of a matrix with two null columns is that its optical implementation
will be restricted to a few number of PIP architectures.

In order to circumvent this technological limitation, let us take
∣∣ϕ
〉
=
∣∣0
〉
. As a result, the

entries of the third and fourth columns of MFO can be regarded as degrees of freedom (αkl ∈ C

with k ∈ {1, . . . , 4} and l ∈ {3, 4}):



nψ0

nψ1

mψ0

mψ1


 =




n 0
0 n

α13 α14

α23 α24

m 0
0 m

α33 α34

α43 α44







ψ0

ψ1

0
0


 . (89)

Remarkably, this new version of MFO can be implemented by a larger gamut of PIP circuits
than in Supplementary Equation 88. As a by-product, the same optical implementation of the
FI gate could also be employed to implement MFO, leading to a common PIP architecture for
both operations (see below p. 54).

Finally, we should discuss the importance of defining the FO gate by using the Cartesian

product. In the same way as in the FI operation, the Cartesian product provides a linear
nature to the FO gate. Alternatively, we could define the FO gate via the tensor product.
Nevertheless, in such a case, the FO gate would have a nonlinear nature. The proof of this
statement may be performed in two steps. Firstly, note that the construction of the FO
gate via the tensor product would be a mapping of E1 ⊗ E1 defined as M̂FO

∣∣ψ,ϕ
〉
:=
∣∣ψ,ψ

〉
.

Secondly, we can directly verify that this mapping has a nonlinear nature using reductio ad

absurdum (i.e. we assume a linear behaviour to find an inconsistent conclusion):

M̂FO

∣∣ψ,ϕ
〉
= M̂FO

(
ψ0

∣∣0, ϕ
〉
+ ψ1

∣∣1, ϕ
〉)

= ψ0M̂FO

∣∣0, ϕ
〉
+ ψ1M̂FO

∣∣1, ϕ
〉

= ψ0

∣∣0, 0
〉
+ ψ1

∣∣1, 1
〉
6=
∣∣ψ,ψ

〉
. (90)

The nonlinear behaviour of this version of the FO operation (defined via the tensor product)
has extensively been discussed in QC within the context of the no-cloning theorem [24].

Properties. As commented above, any 4× 4 matrix of the form:

MFO =

(
nI M12

mI M22

)
, (91)

with M12 and M22 being 2× 2 arbitrary submatrices, is able to carry out an FO operation of
the input anbit

∣∣ψ
〉

when the ancilla anbit is taken to be null
∣∣ϕ
〉
=
∣∣0
〉
. Since this matrix is

more general than Supplementary Equation 87, let us study its properties:

1. Endomorphism family and FI-FO connection. Specifically, MFO describes a family of
endomorphisms of E2 = E1 × E1. In fact, note that the FI gate (see Supplementary
Equation 77) is also described by MFO taking M12 ≡ nI and M22 ≡ −mI.

2. Reversibility. Given that det
(
MFO

)
depends on the value of the submatrices M12 and

M22, we conclude that the FO gate may be reversible (det
(
MFO

)
6= 0) or irreversible

(det
(
MFO

)
= 0).
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3. Non-commutativity. In contrast to the FI operation, the order of the input anbits cannot
be commuted in the FO gate.

4. Algebraic structure. From the expressionsM †
FOMFO = I andMFOM

†
FO = I, we infer that

MFO ∈ U(4) (a 2-anbit U-gate) if and only if the next necessary and sufficient conditions

are fulfilled: (1)n2 + m2 = 1, (2)nM12 + mM22 = 0, (3)M †
12M12 + M †

22M22 = I,

(4) M12M
†
12 =

(
1−n2

)
I, (5) M22M

†
12 = −nmI, (6) M22M

†
22 =

(
1−m2

)
I. For instance,

n = m = 1/
√
2 and M12 = −M22 =

(
1/
√
2
)
I satisfy the above conditions. On the other

hand, MFO ∈ GL (4,C) (a 2-anbit G-gate) by taking parameters n,m and submatrices
M12 and M22 guaranteeing that det

(
MFO

)
6= 0. As an example, n = m = 1 and

M12 = −M22 = I satisfy these conditions. Finally, the cases where det
(
MFO

)
= 0

correspond to an irreversible 2-anbit M-gate.

3.1.3 PIP implementation: a common architecture

From the study of the FI and FO gates, we know that both operations are connected via the
equation:

M̂FO

(∣∣ψ
〉
,
∣∣ϕ
〉
;n,m

)
= ĜFI

(∣∣ψ
〉
,
∣∣0
〉
;n,m

)
. (92)

Thus, the PIP circuit of the FI gate will also be able to perform the FO operation by taking∣∣ϕ
〉
=
∣∣0
〉
. Supplementary Figure 13 shows the optical circuit of the FI gate, whose (reduced)

forward transfer matrix is GFI (Supplementary Equation 77).

Supplementary Figure 13. PIP implementation of both fan-in (FI) and fan-out (FO) gates using
an optical circuit whose (reduced) forward transfer matrix is given by GFI (Supplementary Equation
77). The circuit carries out the FI operation by mapping the anbit amplitudes of

∣∣ψ
〉
×
∣∣ϕ
〉

into the
anbit amplitudes of n

(∣∣ψ
〉
+
∣∣ϕ
〉)
×m

(∣∣ψ
〉
−
∣∣ϕ
〉)

, with n,m ∈ C−{0}. In addition, the FO operation
of
∣∣ψ
〉

can be performed by setting
∣∣ϕ
〉
=
∣∣0
〉

and using positive real parameters n,m.

This architecture is constructed from two identical 2 × 2 subsystems implementing the
reduced forward transfer matrix depicted within the boxes, which may be factorised as:

(
n n
m −m

)
≡
( √

2n 0

0 −i
√
2m

)

︸ ︷︷ ︸
A

1√
2

(
1 i
i 1

)

︸ ︷︷ ︸
B

(
1 0
0 −i

)

︸ ︷︷ ︸
C

. (93)
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The matrices A,B,C can be implemented by PSs, tunable optical attenuators/amplifiers and a
50:50 beam splitter (the PIP implementation of each matrix is sketched in the figure for clarity).
Along this line, it should be noted that Fig. 5a of the paper emerges from Supplementary Figure
13 by restricting the parameters to the default values n = m = 1.

Finally, let us conclude with a brief discussion about the reciprocity and FB symmetry of
such a structure. Assuming reciprocal and FB-symmetric attenuators/amplifiers, the global
system will preserve the Lorentz reciprocity by exhibiting a symmetric S matrix:

S =

(
0 GT

FI

GFI 0

)
, (94)

and will preserve (break) the FB symmetry when n = m (n 6= m). This can be easily verified
by comparing the reduced forward and backward transfer matrices of the 2 × 2 subsystems
integrating the whole structure, which are found to be:

T̃f =

(
n n
m −m

)
, T̃b =

(
n m
n −m

)
. (95)

As seen, T̃f = T̃b when n = m. These conclusions are in line with property 6 of the FI gate
(see p. 51).

3.2 First sequential system of the paper

In this subsection, we will analyse in detail the first sequential architecture reported in the
main text (Fig. 5b). This scheme is the simplest sequential system that can be built in APC,
composed by two FI/FO gates along with two M-gates that complete the feedback loop. While
in the paper we use FI/FO gates with parameters fixed at the default value 1, let us consider
here FI/FO operations with arbitrary parameters to carry out a complete and rigorous analysis
of this first sequential scheme, see Supplementary Figure 14.

Supplementary Figure 14. Sequential computational system of a single anbit, composed by 2
single-anbit M-gates (M̂1 and M̂2), 1 FI gate and 1 FO gate. For the sake of completeness, we use
here FI/FO operations with arbitrary parameters n1,m1 ∈ C− {0} and n2,m2 ∈ R

+ (however, in the
paper, these parameters are set to the default value 1 for simplicity).
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Analysis. The strategy to analyse any sequential architecture in APC is the same as that
of a combinational scheme: we must calculate the input-output relation, in this example∣∣ϕ
〉
= M̂eq

∣∣ψ
〉
. To this end, we should find the relation of M̂eq with the M-gates M̂1 and M̂2

following the anbit transformations that appear in the feedback loop. The simplest way is to
start from the output anbit:

∣∣ϕ
〉
= n2

∣∣χ
〉
= n1n2M̂1

∣∣+
〉
= n1n2M̂1

(∣∣ψ
〉
+
∣∣η
〉)
. (96)

Next, taking into account that
∣∣η
〉
= m2M̂2

∣∣χ
〉
=
(
m2/n2

)
M̂2

∣∣ϕ
〉
, the above equation becomes:

∣∣ϕ
〉
= n1n2M̂1

∣∣ψ
〉
+ n1m2M̂1M̂2

∣∣ϕ
〉
. (97)

Therefore, the input-output relation of the system is found to be:

∣∣ϕ
〉
= n1n2

(
1̂− n1m2M̂1M̂2

)−1
M̂1

∣∣ψ
〉
. (98)

This implies that the sequential architecture is described by an equivalent linear operator of
the form:

M̂eq ≡ n1n2
(
1̂− n1m2M̂1M̂2

)−1
M̂1, (99)

with n1 ∈ C− {0} and n2,m2 ∈ R
+.

Given that the system is an operation of a single anbit, the underlying Hilbert space is E1

(with canonical basis B1 =
{∣∣0
〉
,
∣∣1
〉}

). Hence, the matrix representation of M̂eq associated to
B1 is:

Meq =MB1
B1

(
M̂eq

)
= n1n2 (I − n1m2M1M2)

−1M1, (100)

where M1 and M2 are the matrix representations of M̂1 and M̂2, respectively. Setting n1 =
n2 = m2 ≡ 1, Supplementary Equation 100 is reduced to the expression of Meq reported in
the main text.

Properties. The single-anbit sequential system of Supplementary Figure 14 has the next
properties:

1. Endomorphism. The linear operator M̂eq is an endomorphism of the Hilbert space E1.

2. Existence. Let us rewrite Supplementary Equation 100 as Meq = n1n2G
−1M1, with

G := I−n1m2M1M2. As can be seen, the existence of this sequential system (described
by Meq) directly depends on the existence of G−1, that is:

∃Meq ⇔ ∃G−1 ⇔ det (G) 6= 0⇔ det
(
I − n1m2M1M2

)
6= 0. (101)

Contrariwise, the sequential system could not be built because G would be singular.

3. Reversibility. The gate M̂eq is reversible (automorphism) if and only if det
(
G−1

)
6= 0

and det
(
M1

)
6= 0.
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4. Equivalent system. Since M̂eq may be reversible or irreversible, then the anbit trans-
formation can be regarded as a single-anbit combinational M-gate. In addition, it is
interesting to highlight that the system is equivalent to two different single-anbit gates
M1 and n1n2G

−1 connected in series (Supplementary Figure 15). In this scenario, note
that n1n2G

−1 actually describes a sequential system similar to that of Supplementary
Figure 14, but with the M-gates being I and M1M2. In particular, this system equi-
valence could be employed to simplify computational architectures that combine both
combinational and sequential gates.

Supplementary Figure 15. Equivalent sequential system. The gate M̂1 can be extracted
from the upper branch of the feedback loop following this scheme. The operator M̂eq is the same
as that of the original system shown in Supplementary Figure 14.

5. Algebraic structure. The matrix Meq belongs to U(2) (i.e. the system is equivalent to
a U-gate) if M1 and n1n2G

−1 are 2× 2 unitary matrices. Here, n1n2G
−1 ∈ U(2) if the

following necessary and sufficient condition is satisfied:

A†A− 1

n∗1n2
A− 1

n1n2
A† =

(
1− 1

∣∣n1
∣∣2n22

)
I, (102)

where A :=
(
m2/n2

)
M1M2 and ∗ denotes the complex conjugate. On the other hand,

Meq belongs to GL (2,C) (i.e. the system is equivalent to a G-gate) if M1 is a general
linear matrix (here, we implicitly assume that G ∈ GL (2,C) since it is a necessary and
sufficient condition for the existence of Meq, as discussed above). Finally, Meq is an
M-gate if M1 is a singular matrix (irreversible operation).

6. PIP implementation. Using the circuits depicted in Figs. 3c and 5a of the paper to
implement the gates of the feedback loop illustrated in Supplementary Figure 14, we will
obtain an optical structure that breaks the Lorentz reciprocity and the FB symmetry.

3.3 Second sequential system of the paper

Finally, we will analyse the second sequential architecture reported in the main text (Fig. 5d).
For clarity, we reproduce this scheme in Supplementary Figure 16 including the anbits em-
ployed in the mathematical discussions and considering FI/FO operations with arbitrary para-
meters to carry out a complete and rigorous analysis.
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Supplementary Figure 16. Sequential computational system of two anbits, composed by 2 single-
anbit M-gates (M̂1 and M̂2), 2 FI gates and 2 FO gates. For completeness, we use FI/FO operations
with arbitrary parameters n1,2,m1,2 ∈ C− {0} and n3,4,m3,4 ∈ R

+.

The goal is to find the input-output relation of the structure, as well as to demonstrate
that such a mapping is equivalent to the input-output relation of the multi-anbit combinational
architecture shown in Fig. 5c of the paper. With this approach in mind, we should start by
calculating the output anbits

∣∣ϕ1

〉
and

∣∣ϕ2

〉
independently. The output anbit

∣∣ϕ1

〉
can be

expressed as:

∣∣ϕ1

〉
= n3

∣∣χ
〉

= n1n3M̂1

∣∣+
〉

= n1n3M̂1

(∣∣ψ1

〉
+m4

∣∣γ
〉)

= n1n3M̂1

∣∣ψ1

〉
+ n1n3m4M̂1

∣∣γ
〉

= n1n3M̂1

∣∣ψ1

〉
+ n1n2n3m4M̂1M̂2

∣∣+
〉

= n1n3M̂1

∣∣ψ1

〉
+ n1n2n3m4M̂1M̂2

(∣∣ψ2

〉
+m3

∣∣χ
〉)

= n1n3M̂1

∣∣ψ1

〉
+ n1n2n3m4M̂1M̂2

(∣∣ψ2

〉
+
m3

n3

∣∣ϕ1

〉)

= n1n3M̂1

∣∣ψ1

〉
+ n1n2n3m4M̂1M̂2

∣∣ψ2

〉
+ n1n2m3m4M̂1M̂2

∣∣ϕ1

〉
. (103)

Hence,
∣∣ϕ1

〉
is found to be:

∣∣ϕ1

〉
= n1n3

(
1̂− n1n2m3m4M̂1M̂2

)−1
M̂1

∣∣ψ1

〉

+ n1n2n3m4

(
1̂− n1n2m3m4M̂1M̂2

)−1
M̂1M̂2

∣∣ψ2

〉
. (104)

Repeating the same procedure to calculate
∣∣ϕ2

〉
, we obtain:

∣∣ϕ2

〉
= n1n2m3n4

(
1̂− n1n2m3m4M̂2M̂1

)−1
M̂2M̂1

∣∣ψ1

〉

+ n2n4
(
1̂− n1n2m3m4M̂2M̂1

)−1
M̂2

∣∣ψ2

〉
. (105)
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For simplicity, let us compact the above expressions as:

∣∣ϕ1

〉
= Â1

∣∣ψ1

〉
+ Â2

∣∣ψ2

〉
, (106)

∣∣ϕ2

〉
= B̂1

∣∣ψ1

〉
+ B̂2

∣∣ψ2

〉
, (107)

where the operators Â1,2 and B̂1,2 can be identified by comparing the corresponding equations.
Using the Cartesian product, the input-output relation of the whole sequential structure is:

(∣∣ϕ1

〉
,
∣∣ϕ2

〉)
=
(
Â1

∣∣ψ1

〉
+ Â2

∣∣ψ2

〉
, B̂1

∣∣ψ1

〉
+ B̂2

∣∣ψ2

〉)

=
(
Â1

∣∣ψ1

〉
, B̂1

∣∣ψ1

〉)
+
(
Â2

∣∣ψ2

〉
, B̂2

∣∣ψ2

〉)

=
(
Â1 × B̂1

) (∣∣ψ1

〉
,
∣∣ψ1

〉)
+
(
Â2 × B̂2

) (∣∣ψ2

〉
,
∣∣ψ2

〉)
. (108)

Furthermore, the input-output relation of the multi-anbit combinational architecture of Fig. 5c
of the paper is:

(∣∣ϕ1

〉
,
∣∣ϕ2

〉)
=
(
M̂3

∣∣ψ1

〉
+ M̂5

∣∣ψ2

〉
, M̂4

∣∣ψ1

〉
+ M̂6

∣∣ψ2

〉)

=
(
M̂3

∣∣ψ1

〉
, M̂4

∣∣ψ1

〉)
+
(
M̂5

∣∣ψ2

〉
, M̂6

∣∣ψ2

〉)

=
(
M̂3 × M̂4

) (∣∣ψ1

〉
,
∣∣ψ1

〉)
+
(
M̂5 × M̂6

) (∣∣ψ2

〉
,
∣∣ψ2

〉)
. (109)

As seen, Supplementary Equations 108 and 109 are equivalent mathematical expressions.
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Supplementary Note 4: different versions of APC

The anbit is conceived as a vector function belonging to a two-dimensional (2D) Hilbert
space. However, as commented in the main text, we have the possibility of defining the unit of
information of APC in a Hilbert space with dimension d 6= 2, leading to different versions of
APC, termed as d-APC. In this section, we discuss how to construct the computation theory
(unit of information and basic gates) for the cases d = 1 and d > 2.

4.1 One-dimensional APC (1-APC)

4.1.1 Unit of information: the analog dit

Now, the unit of information is a 1D vector function
∣∣ψ (t)

〉
= ψ0 (t)

∣∣0
〉

referred to as the
analog dit (or andit for short), where ψ0 is a scalar complex function termed as the andit
amplitude and

∣∣0
〉

is a constant unit vector. The user information is encoded in the module
and phase of ψ0.

In the same vein as an anbit, a 1D andit may be implementable in PIP via different
modulation formats (see p. 25). For instance, using a SEM approach, ψ0 can be encoded by
an optical wave packet propagated by the fundamental mode

∣∣0
〉

of a single-mode waveguide
(Supplementary Figure 17). For coherence with the paper, the temporal shape of ψ0 is assumed
rectangular, although alternative physical implementations of a 1D andit can be proposed by
exploring diverse temporal shapes of ψ0. In addition, the following features of a 1D andit
should be highlighted:

• Hilbert space. The single-andit vector space E1 = span
{∣∣0
〉}

along with the standard
complex inner product

〈
·|·
〉

lead to a 1D Hilbert space with canonical (normal) basis

B1 =
{∣∣0
〉}

and a finite norm ‖·‖. Specifically, ‖ψ‖2 describes the optical power (P)

propagated by the waveguide of Supplementary Figure 17: P = ‖ψ‖2 =
〈
ψ|ψ

〉
= |ψ0|2.

• Andit period. The andit period TANDIT is the time interval where ψ0 (t) is defined.

• Measurement and EDFs. The number of EDFs that can be used to encode the user
information depends solely on the kind of andit measurement employed at the receiver. A
coherent measurement retrieves the module and phase of ψ0 (2 EDFs), while a differential
measurement only recovers |ψ0|2 (1 EDF).

• Geometric representation. A 1D andit can be geometrically represented by using a polar
diagram illustrating the module and phase of ψ0 in the complex plane (Supplementary
Figure 17).

• Multiple andits. A computational system with n andits will require to operate in a
Hilbert space En that can be constructed from E1 using the tensor or the Cartesian

product. In the former case, we will obtain the Hilbert space En = E
⊗(n−1)
1 , with

dim
(
En

)
= dim

(
E1

)n
= 1 and canonical basis Bn = {|0, 0, . . . , 0〉}. In the latter case,

we will obtain the Hilbert space En = E
×(n−1)
1 , with dim

(
En

)
= n dim

(
E1

)
= n and

canonical basis Bn =
{(
|0〉 , |0〉 , . . . , |0〉

)
,
(
|0〉 , |0〉 , . . . , |0〉

)
, . . . ,

(
|0〉 , |0〉 , . . . , |0〉

)}
. As

we will see below, in 1-APC, it is more useful to work with the Cartesian product to
define multi-andit operations.
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Supplementary Figure 17. Physical implementation of a one-dimensional andit
∣∣ψ (t)

〉
= ψ0 (t)

∣∣0
〉

using PIP technology and a space-encoding modulation (SEM). The andit amplitude ψ0 = |ψ0| ei∠0 is
encoded by an optical wave packet (or complex envelope) propagated by the fundamental mode

∣∣0
〉

of
a single-mode waveguide. The andit is geometrically represented by using a polar diagram illustrating
the module |ψ0| and phase ∠0 in the complex plane.

4.1.2 Single-andit linear gates

Definition. In the same way as in 2-APC, a single-andit linear gate will be defined as a linear
mapping F̂ (or endomorphism) of E1. The operator F̂ describes a transformation between an
input andit

∣∣ψ
〉
= ψ0

∣∣0
〉

and an output andit
∣∣ϕ
〉
= ϕ0

∣∣0
〉
.

General properties. The properties of a single-andit linear gate in 1-APC are the same as
those of a single-anbit linear gate in 2-APC, but the following details should be highlighted:

• Scalar representation. Instead of using a matrix representation, the input-output relation∣∣ϕ
〉
= F̂

∣∣ψ
〉

can equivalently be expressed via a scalar expression of the form ϕ0 =

Fψ0, where F = 〈0| F̂ |0〉. Utilising the component isomorphism [·]B1
, it is direct to

demonstrate the above equivalence:

ϕ0 =
[∣∣ϕ
〉]

B1
=
[
F̂
∣∣ψ
〉]

B1
= ψ0

[
F̂
∣∣0
〉]

B1
= ψ0 〈0| F̂ |0〉 ≡ Fψ0. (110)

• Reversibility. By definition, the gate is reversible if and only if |F | 6= 0. The inverse gate
is described by the inverse operator F̂−1, whose scalar representation is F−1 = 1/F .

• Geometric representation. A single-andit linear gate may be geometrically interpreted
as a trajectory between two different points in the complex plane, from ψ0 to ϕ0.

• Classes of linear gates. We use the same classification as in 2-APC by considering U-,
G-, and M-gates.

U-gates. Since a U-gate must preserve the norm of the input andit at the output andit
(|ϕ0| = |ψ0|), this class of gates is associated to a unitary operator F̂ = eiδ

∣∣0
〉〈
0
∣∣ or scalar

phase function F = eiδ. Hence, a U-gate only induces a global phase shifting and, consequently,
the MCA is a PS.
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G- and M-gates. The most general scalar complex function that can be defined is of the
form F = |F | eiδ, with arbitrary module |F | and arbitrary phase δ. Such a linear mapping
will describe a G-gate when |F | 6= 0 (reversible operation) and will describe an M-gate when
|F | = 0 (irreversible operation). The MCA is a PS connected in series with a tunable optical
amplifier/attenuator accounting for the transformations eiδ and |F |, respectively.

4.1.3 Dual-andit linear gates

Using the Cartesian product, we may define a Hilbert space E2 = E1 × E1 with canonical
basis B2 =

{(
|0〉 , |0〉

)
,
(
|0〉 , |0〉

)}
which is isomorphic to the Hilbert space of a single anbit

in 2-APC (E
(2-APC)
1 = span {|0〉 , |1〉}). The isomorphism between both spaces is established

by performing the identifications
(
|0〉 , |0〉

)
≡ |0〉 and

(
|0〉 , |0〉

)
≡ |1〉. In this way, any vector

belonging to E2 in 1-APC of the form:

(
|α〉 , |β〉

)
=
(
α0 |0〉 , β0 |0〉

)
= α0

(
|0〉 , |0〉

)
+ β0

(
|0〉 , |0〉

)
, (111)

has associated an anbit belonging to E
(2-APC)
1 of the form |ψ〉 = α0 |0〉 + β0 |1〉. Using this

isomorphism, we can directly extrapolate the theory and circuits of the single-anbit linear
gates in 2-APC (see Fig. 3) to design and implement dual-andit linear gates in 1-APC. As
seen, the Cartesian product paves the way to extrapolate the theory from 2-APC to 1-APC,
a feature that cannot be found by using the tensor product.

On the other hand, the study of multi-andit linear gates in 1-APC will be investigated
simultaneously along with the development of multi-anbit linear gates in 2-APC in future
works. Here, the optical structures proposed by Reck and Clements in refs. [25, 26] could be
of paramount importance to implement multi-andit U-gates in 1-APC.

4.1.4 Controlled gates

In 1-APC, a controlled gate should be defined in a different way from a controlled gate in
2-APC given that a control andit cannot commute between two different states. In this case,
we may establish that a single-andit operation F̂ is applied to a target andit |t〉 = t0 |0〉 when
the amplitude of the control andit |c〉 = c0 |0〉 takes a specific complex value. In such a
scenario, we can also propose an electro-optic design to implement a controlled gate, where
the target and control andits are respectively encoded by 1D optical and electrical signals.

4.1.5 Sequential design

The fundamentals of sequential architectures in 1-APC can be directly extrapolated from 2-
APC by restricting the analysis to 1D vectors. The FI and FO gates (the basic pieces to
construct sequential schemes) can be implemented using similar circuits to those of proposed
in Fig. 5a and Supplementary Figure 13. Concretely, in Fig. 5a, we should only work with the
inputs ψ0 and ϕ0 and the outputs ψ0 + ϕ0 and ψ0 − ϕ0 to carry out FI/FO operations of 1D
andits. Furthermore, note that the analysis and design of the sequential architectures shown
in Figs. 5b and 5d are the same in 1-APC and 2-APC.
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4.1.6 Nonlinear andit gates

The most general definition of a single-andit gate (including both linear and nonlinear con-
tributions) is given by the expression F̂

∣∣ψ
〉
:= f0

(
ψ0

)∣∣0
〉
, with f0 ∈ F (C,C). Thus, F̂ will

induce a nonlinear transformation on the input andit
∣∣ψ
〉

when the scalar function f0 has a
nonlinear behaviour. The theory of nonlinear gates in 1-APC is similar to that of nonlinear
gates in 2-APC. Here, we should only restrict the mathematical formalism of equations 5 and
6 of the paper to 1D.

This kind of gates can be implemented in PIP, e.g., by exploiting the Pockels and Kerr
effects in a single-mode waveguide to carry out second- and third-order nonlinear andit oper-
ations, respectively. As an example, stimulating the self-phase modulation effect in a single-
mode waveguide (similar to that of depicted in Supplementary Figure 17), a nonlinear andit

transformation of the form F̂
∣∣ψ
〉
= ψ0 exp

(
−iγ

∣∣ψ0

∣∣2Leff

)∣∣0
〉

may be obtained (γ and Leff are
nonlinear parameters of the waveguide [27]).

4.2 Multi-dimensional APC (d-APC)

In d-APC with d > 2, the unit of information is a d-dimensional vector function:

∣∣ψ (t)
〉
=

d−1∑

n=0

ψn (t)
∣∣n
〉
, (112)

also termed as andit, where ψ0, ψ1, . . . , ψd−1 are scalar complex functions termed as the andit
amplitudes and

∣∣0
〉
,
∣∣1
〉
, . . . ,

∣∣d − 1
〉

are constant orthonormal vectors. The user information
is encoded in the moduli and phases of the andit amplitudes.

Supplementary Figure 18. Physical implementation of a d-dimensional andit using PIP technology
and a space-encoding modulation (SEM). The andit amplitudes ψ0, ψ1, ψ2, ψ3, . . . , ψd−1 are encoded
by d different optical wave packets (or complex envelopes) propagated by the fundamental modes∣∣0
〉
,
∣∣1
〉
,
∣∣2
〉
,
∣∣3
〉
, . . . ,

∣∣d− 1
〉

of d different single-mode waveguides.
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A d-dimensional andit can be implemented in PIP via different modulation formats that
make use of the space, mode, frequency and time domain of light. These modulation formats
are similar to those proposed for the anbit in Supplementary Note 1 (p. 25), but generalised for
a d-dimensional vector. As an example, in a SEM technique, we can associate

∣∣0
〉
,
∣∣1
〉
, . . . ,

∣∣d−
1
〉

to the fundamental modes of d different single-mode waveguides and the andit amplitudes
can be encoded by d different optical wave packets propagated by these fundamental modes,
see Supplementary Figure 18. Moreover, although the temporal shape of the andit amplitudes
is assumed rectangular (for coherence with the main text), diverse options may be explored
in forthcoming works by employing optical wave packets with different shapes.

The properties of a d-dimensional andit are similar to those of an anbit. In particular, now,
we will have 2d or 2d− 1 EDFs when using coherent or differential measurement, respectively.
In the latter case, the global phase of the andit amplitudes cannot be recovered.

Once we have defined the unit of information of d-APC, the subsequent steps to construct
this version of the computation theory are to study single-andit linear gates, controlled gates,
FI/FO gates, sequential architectures and nonlinear andit gates. Despite the fact that the
theoretical details of these points are out of the scope of this work, the following considerations
are in order:

• From a theoretical perspective, the fundamentals of combinational and sequential com-
puting systems in d-APC are the same as those of 2-APC. The main difference appears
in the mathematical formalism of nonlinear gates, that will require the use of multi-
dimensional multi-variable Taylor series in d-APC.

• From a technological perspective, the PIP implementation of single-andit gates would
require basic devices with d inputs and d outputs. Since the mainstream PIP devices are
1× 1 and 2× 2 optical systems [4], a possible difficulty might arise to implement these
gates. Nonetheless, a suitable PIP implementation of d-APC could be proposed using
the approaches reported in refs. [25,26,28], based on reconfigurable PSs, beam splitters
(combiners) and micro-ring resonators that allow to integrate the desired number of
inputs and outputs within the same optical system. As an example, the results of
ref. [28] can be directly applied to implement single-andit U-gates in 3-APC.

• In QC, the optical implementation of universal quantum gates may be simplified by
combining the use of qubits and qudits [29]. In the same vein, d-APC might be envisioned
as a theoretical tool that could allow us to simplify the PIP implementation of the analog
logic of 2-APC by utilising anbits and andits within the same circuit.
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Supplementary Note 5: implementing other computing theories

In this section, we will discuss how to describe the unit of information and basic operations of
digital computation (DC), neuromorphic computation (NC) and quantum computation (QC)
using the mathematical framework of APC.

5.1 Digital computation

The implementation of DC with APC architectures requires to describe the digital bit and the
Boolean logic using the anbit and its basic gates. Remarkably, an anbit

∣∣ψ
〉
= ψ0

∣∣0
〉
+ ψ1

∣∣1
〉

is able to describe the digital bit by taking ψ0 ∈ {0, 1} and ψ1 = 1 − ψ0. Here, the state
of the anbit is

∣∣0
〉

or
∣∣1
〉
, but the possibility of having a linear combination of both states is

discarded.
Furthermore, the description of the Boolean logic can be carried out in APC keeping

in mind that any Boolean function can be decomposed in terms of NAND gates [30]. Thus,
implementing the NAND operation of DC utilising basic anbit gates, we will be able to perform
any Boolean function in APC.

Supplementary Figure 19. Implementation of Boolean logic in APC. a Functional scheme of the
Toffoli (or CCNOT) gate, described by Supplementary Equation 113, a multi-anbit controlled gate
with 2 control anbits

∣∣c1
〉
,
∣∣c2
〉

and 1 target anbit
∣∣t
〉
. b NAND operation of DC (defined via its truth

table) implemented by the Toffoli gate in APC.

In this scenario, note that the linear unitary mapping of the Toffoli (or CCNOT) gate
given by Supplementary Equation 74 can be recast of the form [22,31]:

∣∣c1, c2, t
〉

CCNOT−→ ÛCCN

∣∣c1, c2, t
〉
=
∣∣c1, c2, t⊕ c1 ∧ c2

〉
, (113)

where ⊕ is the modulo-2 addition and ∧ is the AND operation (Supplementary Figure 19a).
This expression allows us to infer that the Toffoli gate may be employed to implement the
NAND gate:

NAND
(
b1, b2

)
:= ¬

(
b1 ∧ b2

)
= 1⊕ b1 ∧ b2, (114)

by performing the following identification:

∣∣b1, b2,NAND
(
b1, b2

)〉
=
∣∣b1, b2, 1⊕ b1 ∧ b2

〉
≡ ÛCCN

∣∣b1, b2, 1
〉
, (115)

where b1 and b2 are digital bits (i.e., b1,2 ∈ {0, 1}) playing the role of the control anbits in the
Toffoli gate. Moreover, the target anbit is set to

∣∣t
〉
=
∣∣1
〉

at the input (Supplementary Figure
19b). As seen, the use of the Toffoli gate in APC to implement the NAND gate of DC requires
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1 ancilla anbit and 2 garbage anbits (the same remark is found in QC to implement DC via
the quantum Toffoli gate [22,31]). Likewise, let us remember that the PIP implementation of
the Toffoli gate is shown in Supplementary Figure 10 (see p. 47).

On the other hand, a complete implementation of DC in APC requires the ability to build
sequential digital circuits (e.g., digital memories). To this end, latches and flip-flops (the
basic building blocks of most sequential digital systems [30]) could be mimicked in APC by
employing sequential anbit computational schemes. This point should be further investigated
in forthcoming works.

5.2 Neuromorphic computation

NC is a computational model inspired by signal processing in the brain using the so-called
artificial neural networks (ANNs) [32, 33]. The functional principle of an ANN is sketched
in Supplementary Figure 20. Specifically, an ANN is arranged in several layers, which are
composed by small processing units known as neurons. Each neuron processes a 1D complex
signal (the unit of information in NC). In this example, we observe 3 layers with 3 neurons
per layer. Mathematically, the communication between two adjacent layers can be modelled
in two steps [33]:

1. Firstly, it is performed a matrix transformation of a 3D input vector x = (x1, x2, x3),
composed by 3 different units of information x1,2,3. The output is also a 3D vector
y = (y1, y2, y3) (the dimension of x and y depends on the number of neurons per layer).
Hence, this first step is a multi-linear mapping described by a matrix equation of the
form y =Mx, where M is a 3× 3 matrix with complex entries.

2. Secondly, a nonlinear function f ∈ F (C,C) is applied on each component yk of the
vector y. The output of this second step is a 3D vector z = (z1, z2, z3) with zk = f (yk),
∀k ∈ {1, 2, 3}.

Supplementary Figure 20. Artificial neural network (ANN) with 3 neurons per layer [33].

Therefore, the description of NC is straightforward by using 1-APC (see Supplementary
Note 4, on p. 60). In order to explain the connection between NC and 1-APC as simple as
possible, let us describe the ANN depicted in Supplementary Figure 20 via 1-APC. In such a
scenario, the following considerations are in order:
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• Firstly, we should note that the unit of information of NC may be described by a 1D
andit. For instance, the unit of information x1 can be described by a 1D andit of the
form

∣∣x1
〉
= x1

∣∣0
〉
.

• Secondly, the 3D input vector x = (x1, x2, x3) should be written as a function of 3
different 1D andits

∣∣x1
〉
= x1

∣∣0
〉
,
∣∣x2
〉
= x2

∣∣0
〉

and
∣∣x3
〉
= x3

∣∣0
〉

connected via the
Cartesian product. Hence, the vector x may be described by a ket of the form

∣∣X
〉
=∣∣x1

〉
×
∣∣x2
〉
×
∣∣x3
〉
. In the same vein, the vectors y = (y1, y2, y3) and z = (z1, z2, z3) can

respectively be described by the kets
∣∣Y
〉
=
∣∣y1
〉
×
∣∣y2
〉
×
∣∣y3
〉

and
∣∣Z
〉
=
∣∣z1
〉
×
∣∣z2
〉
×
∣∣z3
〉
,

where
∣∣yk
〉
= yk

∣∣0
〉

and
∣∣zk
〉
= zk

∣∣0
〉
, ∀k ∈ {1, 2, 3}.

• Thirdly, the linear and nonlinear mappings of the ANN can respectively be described
in 1-APC by a linear operator M̂ (whose matrix representation must be the M -matrix
used to transform x into y) and a nonlinear operator F̂ connecting the kets

∣∣X
〉
,
∣∣Y
〉
,∣∣Z

〉
via the expressions

∣∣Y
〉
= M̂

∣∣X
〉

and
∣∣Z
〉
= F̂

∣∣Y
〉
= f (y1)

∣∣0
〉
×f (y2)

∣∣0
〉
×f (y3)

∣∣0
〉
.

5.3 Quantum computation

As expected, APC is also able to describe the mathematical model of QC, but only partially.
It is worth mentioning that there are some fundamental concepts of the qubit and its basic
operations that cannot be modelled with APC since it is a computing theory whose unit of
information is implemented by classical waves. In order to clarify these concepts, let us take
a closer look at the unit of information and basic operations of QC.

Unit of information: the qubit. An arbitrary state of a qubit is described by a ket of the
form [22]:

∣∣ψ
〉
= cos

θ

2

∣∣0
〉
+ eiϕ sin

θ

2

∣∣1
〉
, (116)

with 2 EDFs (θ and ϕ) and a constant norm ‖ψ‖2 =
〈
ψ|ψ

〉
= 1. Given that an anbit has more

EDFs than a qubit, we can use the former to describe the latter by setting a constant norm
equal to 1 and using quantum waves to implement the anbit amplitudes.

As commented in the paper, the main differences between both units of information are
associated to the measurement, the description of multiple units of information and the en-
tanglement of units of information:

• Measurement. In quantum mechanics, the wave function collapse makes an ideal quantum
measurement a non-reversible operation in QC [10, 22]. It is impossible to reconstruct
the information encoded by the EDFs of a pre-measurement qubit from the state of a
post-measurement qubit. In contrast, in APC, a measurement is always a reversible

operation because the number of EDFs is preserved, see Supplementary Note 1 on p. 28.
The information encoded by the EDFs of a pre-measurement anbit may be retrieved from
the state of the post-measurement anbit, regardless of whether a coherent or differential
measurement strategy is employed. Therefore, an ideal quantum measurement cannot
be described by the mathematical framework of APC.
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• Multiple units of information. While the description of multiple anbits can be carried out
using the tensor product or the Cartesian product in APC, the description of multiple
qubits must be exclusively performed via the tensor product in QC. This composition
rule is derived from the state postulate and the measurement postulate of quantum
mechanics [34]. However, it is direct to infer that this remark does not impose any
limitation on APC to describe multiple qubits.

• Entanglement. The entanglement of different qubits is possible thanks to the non-local
nature of quantum mechanics [22]. Unfortunately, this instantaneous non-locality can-
not be found in a deterministic physical theory, e.g., in classical electromagnetism [35].
Although electromagnetic non-local media are supported by Maxwell’s equations, the
time response is causal, that is, there is a time delay between the incident electric field
strength (E =

∑
l Elûl) and the electric displacement (D =

∑
k Dkûk). Here, it should

be noted that the most general non-local linear constitutive relation between E and D

is given by the expression (Einstein’s summation convention) [36]:

Dk (r, t) =

∫ ∞

−∞

∫ t

−∞
εkl
(
r, r′, t, t′

)
El
(
r′, t′

)
dt′d3r′, (117)

where εkl is the electric permittivity tensor. Specifically, the time integral precludes
instantaneous non-local effects in classical electromagnetism. Consequently, the quantum
entanglement cannot be described by APC given that its technological PIP implement-
ation is based on classical electromagnetic waves.

Basic qubit operations. The basic operations of QC are single-qubit gates and controlled
qubit gates. Interestingly, the mathematical framework of APC is able to describe all these
operations. A single-qubit gate is mathematically equivalent to a single-anbit U-gate and the
theoretical formalism of a controlled anbit gate is the same as that of a controlled qubit gate
(as commented on p. 43). In addition, taking into account that any qubit logic gate may be
composed from single-qubit gates and controlled qubit gates [22], we infer that a multi-qubit
operation can also be described by APC. Nonetheless, any quantum operation exploiting the
non-local nature of quantum mechanics cannot be emulated with APC.

Conclusion. APC is able to partially describe the mathematical (and physical) model of QC
given that the ideal quantum measurement and the quantum entanglement have no classical
analogy in our computation theory, as discussed above. Nevertheless, APC might be regarded
as a potential theoretical and didactic toolbox (implementable with current technology) that
could improve our comprehension about the subtle (but essential) differences between quantum
and classical systems.

68



References

[1] Okamoto, K. Fundamentals of Optical Waveguides. 2nd ed. (Elsevier, London, 2006).

[2] Winzer, P. J. & Essiambre, R.-J. Advanced modulation formats for high-capacity optical
transport networks. J. Lightwave Technology 24, 4711 (2006).

[3] Chen, X., Macho, A. & Horche, P. R. Performance evaluation of 100 and 200-Gb/s WDM
PM-QPSK transmission systems: tolerance analysis to the optical link impairments ac-
cording to the optical carrier shape. Optical Review 25, 663 (2018).

[4] Capmany, J. & Pérez, D. Programmable Integrated Photonics. (Oxford University Press,
Oxford, 2020).

[5] Slepian, D. & Pollak, H. O. Prolate spheroidal wave functions, Fourier analysis and
uncertainty-I. Bell System Technical Journal 40, 43 (1961).

[6] Ho, K.-P. Phase-Modulated Optical Communications Systems. (Springer, New York,
2005).

[7] Kirillov, A. An Introduction to Lie Groups and Lie Algebras. (Cambridge University Press,
Cambridge, 2008).

[8] Frankel, T. The Geometry of Physics. (Cambridge University Press, Cambridge, 2011).

[9] Landi, G. & Zampini, A. Linear Algebra and Analytic Geometry for Physical Sciences.
(Springer, Cham, 2018).

[10] Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics, Volume I: Basic Concepts,

Tools, and Applications. (Wiley, Weinheim, 2020).

[11] Rieffel, E. & Polak, W. Quantum Computing: A Gentle Introduction, Ch. 3. (The MIT
Press, Massachusetts, 2011).

[12] Roman, S. Advanced Linear Algebra. (Springer, New York, 2005).

[13] Golub, G. H. & Van Loan, C. F. Matrix Computations. (The Johns Hopkins University
Press, Baltimore, 2013).

[14] Jalas, D. et al. What is - and what is not - an optical isolator. Nature Photonics 7, 579
(2013).

[15] Caloz, C. et al. Electromagnetic nonreciprocity. Physical Review Applied 10, 047001
(2018).

[16] Pérez, D., Gasulla, I., DasMahapatra, P. & Capmany, J. Principles, fundamentals and
applications of programmable integrated photonics. Advances in Optics and Photonics

12, 709 (2020).

[17] Pérez, D. & Capmany, J. Scalable analysis for arbitrary photonic integrated waveguide
meshes. Optica 6, 19 (2019).

69



[18] Macho, A., Pérez, D. & Capmany, J. Optical implementation of 2×2 universal unitary
matrix transformations. Laser & Photonics Reviews 15, 2000473 (2021).

[19] Mostow, G. D. Some new decomposition theorems for semi-simple groups. Memoirs of

the American Mathematical Society 14, 31 (1955).

[20] Nielsen, F. & Bhatia, R. Matrix Information Geometry. (Springer, Berlin, 2012).

[21] Hall, B. C. Lie Groups, Lie Algebras, and Representations. (Springer, New York, 2003).

[22] Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. (Cam-
bridge University Press, Cambridge, 2016).

[23] Pérez, D., López, A., Dasmahapatra, P. & Capmany, J. Multipurpose self-configuration
of programmable photonic circuits. Nature Communications 11, 6359 (2020).

[24] Scarani, V., Iblisdir, S., Gisin, N. & Acín, A. Quantum cloning. Reviews of Modern

Physics 77, 1225 (2005).

[25] Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any
discrete unitary operator. Physical Review Letters 73, 58 (1994).

[26] Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I.
A. Optimal design for universal multiport interferometers. Optica 3, 1460 (2016).

[27] Agrawal, G. P. Nonlinear Fiber Optics. (Elsevier, Oxford, 2013).

[28] Sato, T. & Enokihara, A. Ultrasmall design of a universal linear circuit based on microring
resonators. Optics Express 27, 33005 (2019).

[29] Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces.
Nature Physics 5, 134 (2009).

[30] Wakerly, J. F. Digital Design: Principles and Practices. (Pearson, New Jersey, 2006).

[31] Desurvire, E. Classical and Quantum Information Theory: An Introduction for the Tele-

com Scientist. (Cambridge University Press, Cambridge, 2009).

[32] Mohamed, K. S. Neuromorphic Computing and Beyond. (Springer, Cham, 2020).

[33] Cartlidge, E. Optical neural networks. Optics & Photonics News 6, 34 (2020).

[34] Carcassi, G., Maccone, L. & Aidala, C. A. Four postulates of quantum mechanics are
three. Physical Review Letters 126, 110402 (2021).

[35] Popescu, S. Nonlocality beyond quantum mechanics. Nature Physics 10, 264 (2014).

[36] Mikki, S. M. & Kishk, A. A. Nonlocal Electromagnetic Media: A Paradigm for Material
Engineering. In Passive Microwave Components and Antennas (ed. Zhurbenko, V.) 73-94
(InTech, Rijeka, 2010).

70


	Supplementary Note 1: the analog bit
	1.1 Anbit modulation formats
	1.2 Anbit measurement
	1.3 Geometric representation: the generalised Bloch Sphere (GBS)
	1.4 Anbit amplitudes: component isomorphism
	1.5 Multiple anbits: tensor product vs Cartesian product

	Supplementary Note 2: combinational design
	2.1 General properties of single-anbit linear gates
	2.2 Equivalent circuit architectures of single-anbit linear gates
	2.3 Controlled gates
	2.3.1 Single control anbit
	2.3.2 Multiple control anbits


	Supplementary Note 3: sequential design
	3.1 Fan-in and fan-out gates
	3.1.1 Fan-in: anbit addition
	3.1.2 Fan-out: anbit cloning
	3.1.3 PIP implementation: a common architecture

	3.2 First sequential system of the paper
	3.3 Second sequential system of the paper

	Supplementary Note 4: different versions of APC
	4.1 One-dimensional APC (1-APC)
	4.1.1 Unit of information: the analog dit
	4.1.2 Single-andit linear gates
	4.1.3 Dual-andit linear gates
	4.1.4 Controlled gates
	4.1.5 Sequential design
	4.1.6 Nonlinear andit gates

	4.2 Multi-dimensional APC (d-APC)

	Supplementary Note 5: implementing other computing theories
	5.1 Digital computation
	5.2 Neuromorphic computation
	5.3 Quantum computation


